HOXB1 founder mutation in humans recapitulates the phenotype of Hoxb1-/- mice.

[1]  E. Engle,et al.  Recent Progress in Understanding Congenital Cranial Dysinnervation Disorders , 2011, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[2]  H. Takeda,et al.  Retinoic acid-dependent establishment of positional information in the hindbrain was conserved during vertebrate evolution. , 2011, Developmental biology.

[3]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[4]  M. Patton,et al.  A family with hereditary congenital facial paresis and a brief review of the literature. , 2010, Clinical dysmorphology.

[5]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[6]  T. Meitinger,et al.  Human TUBB3 Mutations Perturb Microtubule Dynamics, Kinesin Interactions, and Axon Guidance , 2010, Cell.

[7]  S. Guthrie,et al.  Patterning and axon guidance of cranial motor neurons , 2007, Nature Reviews Neuroscience.

[8]  E. Traboulsi Congenital cranial dysinnervation disorders and more. , 2007, Journal of AAPOS : the official publication of the American Association for Pediatric Ophthalmology and Strabismus.

[9]  G. Miller The Mystery of the Missing Smile , 2007, Science.

[10]  L. Selleri,et al.  Hox cofactors in vertebrate development. , 2006, Developmental biology.

[11]  Arlo Z. Randall,et al.  Prediction of protein stability changes for single‐site mutations using support vector machines , 2005, Proteins.

[12]  E. Engle,et al.  Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development , 2005, Nature Genetics.

[13]  Modesto Orozco,et al.  PMUT: a web-based tool for the annotation of pathological mutations on proteins , 2005, Bioinform..

[14]  Y. Chi Homeodomain revisited: a lesson from disease-causing mutations , 2005, Human Genetics.

[15]  D. Wilkinson,et al.  Establishing neuronal circuitry: Hox genes make the connection. , 2004, Genes & development.

[16]  Benjamin R. Arenkiel,et al.  Hoxb1 functions in both motoneurons and in tissues of the periphery to establish and maintain the proper neuronal circuitry. , 2004, Genes & development.

[17]  H. Shehata,et al.  Neurological disorders in pregnancy , 2004, Current opinion in obstetrics & gynecology.

[18]  Christiana Ruhrberg,et al.  Neuronal defects in the hindbrain of Hoxa1, Hoxb1 and Hoxb2 mutants reflect regulatory interactions among these Hox genes , 2003, Development.

[19]  E. Engle,et al.  110th ENMC International Workshop: The congenital cranial dysinnervation disorders (CCDDs) Naarden, The Netherlands, 25–27 October, 2002 , 2003, Neuromuscular Disorders.

[20]  J. Cruysberg,et al.  Möbius syndrome redefined , 2003, Neurology.

[21]  Benjamin R. Arenkiel,et al.  Hoxb1 neural crest preferentially form glia of the PNS , 2003, Developmental dynamics : an official publication of the American Association of Anatomists.

[22]  L. Serrano,et al.  Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. , 2002, Journal of molecular biology.

[23]  S. Radovick,et al.  Combined pituitary hormone deficiency due to the F135C human Pit-1 (pituitary-specific factor 1) gene mutation: functional and structural correlates. , 2001, Molecular endocrinology.

[24]  M. Liberman,et al.  Predicting Vulnerability to Acoustic Injury with a Noninvasive Assay of Olivocochlear Reflex Strength , 2000, The Journal of Neuroscience.

[25]  M. Capecchi,et al.  Mice mutant for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. , 1999, Development.

[26]  H. Kremer,et al.  A second gene for autosomal dominant Möbius syndrome is localized to chromosome 10q, in a Dutch family. , 1999, American journal of human genetics.

[27]  T. Takumi,et al.  Identification of mutations in the hepatocyte nuclear factor-1alpha gene in Japanese subjects with early-onset NIDDM and functional analysis of the mutant proteins. , 1999, Diabetes.

[28]  M. Cleary,et al.  Structure of a HoxB1–Pbx1 Heterodimer Bound to DNA Role of the Hexapeptide and a Fourth Homeodomain Helix in Complex Formation , 1999, Cell.

[29]  JoAnn McGee,et al.  Long-Term Effects of Sectioning the Olivocochlear Bundle in Neonatal Cats , 1998, The Journal of Neuroscience.

[30]  R. Krumlauf,et al.  Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. , 1998, Development.

[31]  M. Liberman,et al.  Conditioning-related protection from acoustic injury: effects of chronic deefferentation and sham surgery. , 1997, Journal of neurophysiology.

[32]  P. Chambon,et al.  Role of Hoxa-2 in axon pathfinding and rostral hindbrain patterning. , 1997, Development.

[33]  F. Mavilio,et al.  Functional dissection of a transcriptionally active, target‐specific Hox–Pbx complex , 1997, The EMBO journal.

[34]  M. Featherstone,et al.  Distinct HOX N-terminal Arm Residues Are Responsible for Specificity of DNA Recognition by HOX Monomers and HOX·PBX Heterodimers* , 1997, The Journal of Biological Chemistry.

[35]  R. Krumlauf,et al.  Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1 , 1996, Nature.

[36]  J. M. Goddard,et al.  Mice with targeted disruption of Hoxb-1 fail to form the motor nucleus of the VIIth nerve. , 1996, Development.

[37]  J. Leunissen,et al.  Localization of a gene for Möbius syndrome to chromosome 3q by linkage analysis in a Dutch family. , 1996, Human molecular genetics.

[38]  R. Mann,et al.  Extra specificity from extradenticle: the partnership between HOX and PBX/EXD homeodomain proteins. , 1996, Trends in genetics : TIG.

[39]  P. Knoepfler,et al.  The pentapeptide motif of Hox proteins is required for cooperative DNA binding with Pbx1, physically contacts Pbx1, and enhances DNA binding by Pbx1 , 1995, Molecular and cellular biology.

[40]  R. Mann The specificity of homeotic gene function , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[41]  M. Cleary,et al.  Pbx proteins display hexapeptide-dependent cooperative DNA binding with a subset of Hox proteins. , 1995, Genes & development.

[42]  R. Krumlauf Hox genes in vertebrate development , 1994, Cell.

[43]  T Kawase,et al.  Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones. , 1993, Journal of neurophysiology.

[44]  M. Scott Vertebrate homeobox gene nomenclature , 1992, Cell.

[45]  William McGinnis,et al.  Homeobox genes and axial patterning , 1992, Cell.

[46]  R. Grantham Amino Acid Difference Formula to Help Explain Protein Evolution , 1974, Science.

[47]  Kathleen R. Bogart,et al.  Living with Moebius syndrome: adjustment, social competence, and satisfaction with life. , 2010, The Cleft palate-craniofacial journal : official publication of the American Cleft Palate-Craniofacial Association.

[48]  S. Henikoff,et al.  Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.

[49]  R. Mann,et al.  Hox specificity unique roles for cofactors and collaborators. , 2009, Current topics in developmental biology.

[50]  R. Mann,et al.  Chapter 3 Hox Specificity , 2009 .

[51]  G. Miller Neurological disorders. The mystery of the missing smile. , 2007, Science.

[52]  Wen-Hsiung Li,et al.  Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications , 2005, Journal of Molecular Evolution.

[53]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[54]  E. Boncinelli,et al.  A genetic polymorphism in the human HOXB1 homeobox gene implying a 9bp tandem repeat in the amino-terminal coding region. Mutations in brief no. 200. Online. , 1998, Human Mutation.

[55]  A. Shimizu,et al.  A genetic polymorphism in the human HOXB1 homeobox gene implying a 9bp tandem repeat in the amino-terminal coding region. Mutations in brief no. 200. Online. , 1998 .

[56]  W. Gehring,et al.  Homeodomain proteins. , 1994, Annual review of biochemistry.