Folding-Free Global Conformal Mapping for Genus-0 Surfaces by Harmonic Energy Minimization

Surface conformal maps between genus-0 surfaces play important roles in applied mathematics and engineering, with applications in medical image analysis and computer graphics. Previous work (Gu and Yau in Commun Inf Syst 2(2):121–146, 2002) introduces a variational approach, where global conformal parameterization of genus-0 surfaces was addressed through minimizing the harmonic energy, with two weaknesses: its gradient descent iteration is slow, and its solutions contain undesired parameterization foldings when the underlying surface has long sharp features. In this paper, we propose an algorithm that significantly accelerates the harmonic energy minimization and a method that iteratively removes foldings by taking advantages of the weighted Laplace–Beltrami eigen-projection. Experimental results show that the proposed approaches compute genus-0 surface harmonic maps much faster than the existing algorithm in Gu and Yau (Commun Inf Syst 2(2):121–146, 2002) and the new results contain no foldings.

[1]  Hiromasa Suzuki,et al.  Three-dimensional geometric metamorphosis based on harmonic maps , 1998, The Visual Computer.

[2]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[3]  Guillermo Sapiro,et al.  Conformal Surface Parameterization for Texture Mapping , 1999 .

[4]  Shi-Min Hu,et al.  Optimal Surface Parameterization Using Inverse Curvature Map , 2008, IEEE Transactions on Visualization and Computer Graphics.

[5]  S. Yau,et al.  Lectures on Harmonic Maps , 1997 .

[6]  Hans-Christian Hege,et al.  Visualization and Mathematics III , 2011 .

[7]  Craig Gotsman,et al.  Characterizing Shape Using Conformal Factors , 2008, 3DOR@Eurographics.

[8]  C. Udriste,et al.  Convex Functions and Optimization Methods on Riemannian Manifolds , 1994 .

[9]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[10]  Xianfeng Gu,et al.  Discrete Surface Ricci Flow , 2008, IEEE Transactions on Visualization and Computer Graphics.

[11]  A. Barr,et al.  Discrete Differential-Geometry Operators in n D , 2000 .

[12]  S. Yau,et al.  Lectures on Differential Geometry , 1994 .

[13]  Yalin Wang,et al.  Optimal global conformal surface parameterization , 2004, IEEE Visualization 2004.

[14]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[15]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[16]  Lok Ming Lui,et al.  Optimized Conformal Surface Registration with Shape-based Landmark Matching , 2010, SIAM J. Imaging Sci..

[17]  Lok Ming Lui,et al.  Variational Method on Riemann Surfaces using Conformal Parameterization and its Applications to Image Processing , 2008 .

[18]  Arthur W. Toga,et al.  Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[19]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[20]  T. Chan,et al.  Genus zero surface conformal mapping and its application to brain surface mapping. , 2004, IEEE transactions on medical imaging.

[21]  Lok Ming Lui,et al.  Landmark constrained genus zero surface conformal mapping and its application to brain mapping research , 2007 .

[22]  Philip L. Bowers,et al.  Coordinate systems for conformal cerebellar flat maps , 2000, NeuroImage.

[23]  P. Schröder,et al.  Conformal equivalence of triangle meshes , 2008, SIGGRAPH 2008.

[24]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[25]  Arthur W. Toga,et al.  Conformal Metric Optimization on Surface (CMOS) for Deformation and Mapping in Laplace-Beltrami Embedding Space , 2011, MICCAI.

[26]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[27]  Guoliang Xu,et al.  Convergent discrete Laplace-Beltrami operators over triangular surfaces , 2004, Geometric Modeling and Processing, 2004. Proceedings.

[28]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[29]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[30]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[31]  Arthur W. Toga,et al.  Metric-induced optimal embedding for intrinsic 3D shape analysis , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[32]  William W. Hager,et al.  A Nonmonotone Line Search Technique and Its Application to Unconstrained Optimization , 2004, SIAM J. Optim..

[33]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[34]  Wotao Yin,et al.  A feasible method for optimization with orthogonality constraints , 2013, Math. Program..