Pseudo Limits, Biadjoints, and Pseudo Algebras: Categorical Foundations of Conformal Field Theory

Introduction Some comments on conformal field theory Weighted pseudo limits in a 2-category Weighted pseudo colimits in the 2-category of small categories Weighted pseudo limits in the 2-category of small categories Theories and algebras Pseudo $T$-algebras Weighted pseudo limits in the 2-category of pseudo $T$-algebras Biuniversal arrows and biadjoints Forgetful 2-functors for pseudo algebras Weighted bicolomits of pseudo $T$-algebras Stacks 2-Theories, algebras, and weighted pseudo limits Bibliography Index.

[1]  Angelo Vistoli Notes on Grothendieck topologies, fibered categories and descent theory , 2004 .

[2]  F. W. Lawvere,et al.  Some algebraic problems in the context of functorial semantics of algebraic theories , 1968 .

[3]  Quasi-Kan extensions for 2-categories , 1974 .

[4]  John Power Enriched Lawvere Theories , .

[5]  F. W. Lawvere,et al.  HOW ALGEBRAIC IS ALGEBRA , 2001 .

[6]  LAX OPERAD ACTIONS AND COHERENCE FOR MONOIDAL N -CATEGORIES, A∞ RINGS AND MODULES , 1997 .

[7]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[8]  Ross Street,et al.  Coherence of tricategories , 1995 .

[9]  Ieke Moerdijk,et al.  Introduction to the Language of Stacks and Gerbes , 2002, math/0212266.

[10]  Ross Street,et al.  Fibrations in bicategories , 1980 .

[11]  TheoryJohn C. Baez,et al.  Higher-Dimensional Algebra andTopological Quantum Field , 1995 .

[12]  J. Baez,et al.  Higher dimensional algebra and topological quantum field theory , 1995, q-alg/9503002.

[13]  G. M. Kelly,et al.  Two-dimensional monad theory , 1989 .

[14]  Stephen Lack On the monadicity of finitary monads , 1999 .

[15]  L. Breen On the classification of 2-gerbes and 2-stacks , 1994 .

[16]  G. M. Kelly Elementary observations on 2-categorical limits , 1989, Bulletin of the Australian Mathematical Society.

[17]  Ross Street,et al.  Limits indexed by category-valued 2-functors , 1976 .

[18]  M. Kapranov,et al.  Higher Category Theory , 1998 .

[19]  P. T. Johnstone,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY (London Mathematical Society Lecture Note Series, 64) , 1983 .

[20]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[21]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[22]  John W. Gray,et al.  Categories in Computer Science and Logic , 1989 .

[23]  I. Kríz On spin and modularity in conformal field theory , 2003 .

[24]  S. Lane Natural Associativity and Commutativity , 1979 .

[25]  John L. MacDonald,et al.  Soft adjunction between 2-categories , 1989 .

[26]  John W. Gray,et al.  Formal category theory: adjointness for 2-categories , 1974 .

[27]  J. Polchinski An introduction to the bosonic string , 1998 .

[28]  S. Lack,et al.  Codescent objects and coherence , 2002 .

[29]  J. Gray The existence and construction of Lax limits , 1980 .

[30]  R. Street Correction to “Fibrations in bicategories” , 1987 .

[31]  G. Segal The Definition of Conformal Field Theory , 1988 .

[32]  G. M. Kelly,et al.  Flexible limits for 2-categories , 1989 .

[33]  B. Fantechi Stacks for Everybody , 2001 .

[34]  G. M. Kelly,et al.  Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads , 1993 .

[35]  I. Kríz,et al.  Conformal field theory and elliptic cohomology , 2004 .

[36]  Richard E. Borcherds,et al.  Monstrous moonshine and monstrous Lie superalgebras , 1992 .

[37]  G. M. Kelly,et al.  A notion of limit for enriched categories , 1975, Bulletin of the Australian Mathematical Society.

[38]  Jean Giraud,et al.  Cohomologie non abélienne , 1971 .

[39]  R. Street,et al.  Review of the elements of 2-categories , 1974 .

[40]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Closed and Open Conformal Field Theories and Their Anomalies , 2004, hep-th/0401061.

[42]  Jean Benabou,et al.  Structures algébriques dans les catégories , 1968 .

[43]  S. Lack,et al.  The formal theory of monads II , 2002 .

[44]  Jiří Adámek,et al.  On the duality between varieties and algebraic theories , 2003 .

[45]  B R Greene,et al.  String theory. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[46]  I. Kríz,et al.  On Kontsevich's Hochschild cohomology conjecture , 2003, Compositio Mathematica.

[47]  J. Gray Closed categories, lax limits and homotopy limits , 1980 .

[48]  Claudio Hermida From coherent structures to universal properties , 2000 .

[49]  Harold Simmons,et al.  The glueing construction and lax limits , 1994, Mathematical Structures in Computer Science.