Volume tracing of atmospheric environments

Current three-dimensional computer graphics assumes a vacuum space. The inclusion of atmosphere is essential for the modeling and rendering of natural phenomena. This paper presents a method of modeling atmospheric effects and rendering them using a volume tracing renderer. The model is built within a framework called the atmospheric cube. The atmospheric cube, or the A-cube, is a finite volume that encloses the three-dimensional scene to be modeled. The atmosphere is defined by particles of varying radii, which are distributed over the cube. The distribution of particles determines the density of atmosphere. The interaction of light with the atmosphere is divided into four cases to capture the characteristics of the atmospheric illumination by particles of different radii: absorption, Rayleigh scattering, Mie scattering, and geometric optics. The atmospheric equation is a combination of modeling techniques covering the four cases. To render the interaction of light with the atmosphere, we present the rendering technique called volume tracing. Examples of blue sky, sunset, hazy sky, shaft of light beam, and rainbow are given.

[1]  M. Hartmann,et al.  Light scattering by small particles. Von H. C. VANDE HULST. New York: Dover Publications, Inc. 1981. Paperback, 470 S., 103 Abb. und 46 Tab., US $ 7.50 , 1984 .

[2]  M. Inakage,et al.  Frequency modulation synthesis , 1987 .

[3]  Robert L. Cook,et al.  Stochastic sampling in computer graphics , 1988, TOGS.

[4]  Kenneth E. Torrance,et al.  The zonal method for calculating light intensities in the presence of a participating medium , 1987, SIGGRAPH.

[5]  Mark A. Z. Dippé,et al.  Antialiasing through stochastic sampling , 1985, SIGGRAPH.

[6]  T KajiyaJames,et al.  Ray tracing volume densities , 1984 .

[7]  Darwyn R. Peachey,et al.  Solid texturing of complex surfaces , 1985, SIGGRAPH.

[8]  Tomoyuki Nishita,et al.  A shading model for atmospheric scattering considering luminous intensity distribution of light sources , 1987, SIGGRAPH.

[9]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[10]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[11]  Nelson L. Max,et al.  Atmospheric illumination and shadows , 1986, SIGGRAPH.

[12]  E. H. Linfoot Principles of Optics , 1961 .

[13]  B. STEWART,et al.  Physical Meteorology , 1870, Nature.

[14]  Donald P. Greenberg,et al.  The hemi-cube: a radiosity solution for complex environments , 1985, SIGGRAPH.

[15]  Turner Whitted,et al.  An improved illumination model for shaded display , 1979, CACM.

[16]  Robert L. Cook,et al.  Shade trees , 1984, SIGGRAPH.

[17]  John E. Tyler,et al.  The nature of light and colour in the open air , 1954 .

[18]  R. Voss Random Fractal Forgeries , 1985 .

[19]  Spencer W. Thomas Dispersive refraction in ray tracing , 2005, The Visual Computer.

[20]  Carl B. Boyer,et al.  The rainbow from myth to mathematics , 1959 .

[21]  R. Victor Klassen,et al.  Modeling the effect of the atmosphere on light , 1987, TOGS.

[22]  P GreenbergDonald,et al.  The hemi-cube , 1985 .

[23]  Roy Hall A characterization of illumination models and shading techniques , 2005, The Visual Computer.

[24]  James F. Blinn,et al.  Light reflection functions for simulation of clouds and dusty surfaces , 1982, SIGGRAPH.