Trajectory Data Pattern Mining

In this paper, we study the problem of mining for frequent trajectories, which is crucial in many application scenarios, such as vehicle traffic management, hand-off in cellular networks, supply chain management. We approach this problem as that of mining for frequent sequential patterns. Our approach consists of a partitioning strategy for incoming streams of trajectories in order to reduce the trajectory size and represent trajectories as strings. We mine frequent trajectories using a sliding windows approach combined with a counting algorithm that allows us to promptly update the frequency of patterns. In order to make counting really efficient, we represent frequent trajectories by prime numbers, whereby the Chinese reminder theorem can then be used to expedite the computation.

[1]  Enno Ohlebusch,et al.  A Space Efficient Solution to the Frequent String Mining Problem for Many Databases , 2008, ECML/PKDD.

[2]  Ming-Syan Chen,et al.  Sliding window filtering: an efficient method for incremental mining on a time-variant database , 2005, Inf. Syst..

[3]  Volker Heun,et al.  Optimal String Mining Under Frequency Constraints , 2006, PKDD.

[4]  Elio Masciari Warehousing and querying trajectory data streams with error estimation , 2012, DOLAP '12.

[5]  Rajeev Motwani,et al.  Dynamic itemset counting and implication rules for market basket data , 1997, SIGMOD '97.

[6]  Diego Klabjan,et al.  Warehousing and Analyzing Massive RFID Data Sets , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[7]  Maguelonne Teisseire,et al.  GeT_Move: An Efficient and Unifying Spatio-temporal Pattern Mining Algorithm for Moving Objects , 2012, IDA.

[8]  Philip S. Yu,et al.  Moment: maintaining closed frequent itemsets over a stream sliding window , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[9]  Christian S. Jensen,et al.  Discovery of convoys in trajectory databases , 2008, Proc. VLDB Endow..

[10]  Zhan Li,et al.  Knowledge and Information Systems , 2007 .

[11]  Nan Jiang,et al.  Research issues in data stream association rule mining , 2006, SGMD.

[12]  Elio Masciari Trajectory Clustering via Effective Partitioning , 2009, FQAS.

[13]  Johannes Fürnkranz,et al.  Knowledge Discovery in Databases: PKDD 2006, 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, Berlin, Germany, September 18-22, 2006, Proceedings , 2006, PKDD.

[14]  Jae-Gil Lee,et al.  TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering , 2008, Proc. VLDB Endow..

[15]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[16]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD '00.

[17]  Wei-Ying Ma,et al.  Understanding mobility based on GPS data , 2008, UbiComp.

[18]  Carlo Zaniolo,et al.  Verifying and Mining Frequent Patterns from Large Windows over Data Streams , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[19]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[20]  Yunhao Liu,et al.  Mining Frequent Trajectory Patterns for Activity Monitoring Using Radio Frequency Tag Arrays , 2012, IEEE Transactions on Parallel and Distributed Systems.

[21]  Umeshwar Dayal,et al.  PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth , 2001, ICDE 2001.

[22]  José Francisco Martínez-Trinidad,et al.  Progress in Pattern Recognition, Image Analysis and Applications, 12th Iberoamericann Congress on Pattern Recognition, CIARP 2007, Valparaiso, Chile, November 13-16, 2007, Proceedings , 2008, CIARP.

[23]  Chun-Hee Lee,et al.  Efficient storage scheme and query processing for supply chain management using RFID , 2008, SIGMOD Conference.

[24]  Jian Pei,et al.  CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets , 2000, ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.

[25]  David Maier,et al.  No pane, no gain: efficient evaluation of sliding-window aggregates over data streams , 2005, SGMD.

[26]  Meng Hu,et al.  TrajPattern: Mining Sequential Patterns from Imprecise Trajectories of Mobile Objects , 2006, EDBT.

[27]  Jae-Gil Lee,et al.  Trajectory Outlier Detection: A Partition-and-Detect Framework , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[28]  Torsten Grust,et al.  Advances in database technology - EDBT 2006 : 10th International Conference on Extending Database Technology, Munich, Germany, March 2006; proceedings , 2006 .

[29]  Carson Kai-Sang Leung,et al.  CanTree: a tree structure for efficient incremental mining of frequent patterns , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[30]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[31]  Yifan Li,et al.  Clustering moving objects , 2004, KDD.

[32]  Mohammed J. Zaki,et al.  CHARM: An Efficient Algorithm for Closed Itemset Mining , 2002, SDM.

[33]  Osmar R. Zaïane,et al.  Incremental mining of frequent patterns without candidate generation or support constraint , 2003, Seventh International Database Engineering and Applications Symposium, 2003. Proceedings..

[34]  José Francisco Martínez Trinidad,et al.  A Novel Incremental Algorithm for Frequent Itemsets Mining in Dynamic Datasets , 2008, CIARP.

[35]  Dino Pedreschi,et al.  Trajectory pattern mining , 2007, KDD '07.

[36]  Philip S. Yu,et al.  An effective hash-based algorithm for mining association rules , 1995, SIGMOD '95.