Computing Curve Skeletons from Medial Surfaces of 3D Shapes

Skeletons are powerful shape descriptors with many applications in shape processing, reconstruction and matching. In this paper we show that in 3D, curve skeletons can be extracted from surface skeletons in the same manner as surface skeletons can be computed from 3D object representations. Thus, the curve skeleton is conceptually the result of a recursion applied twice to a given 3D shape. To compute them, we propose an explicit advection of the surface skeleton in the implicitly-computed gradient of its distance-transform field. Through this process, surface skeleton points collapse into the sought curve skeleton. As a side result, we show how to reconstruct accurate and smooth surface skeletons from point-cloud representations thereof. Finally, we compare our method to existing state-of-the-art approaches.

[1]  Robert Strzodka,et al.  Generalized distance transforms and skeletons in graphics hardware , 2004, VISSYM'04.

[2]  Laurent D. Cohen,et al.  Geodesic Computations for Fast and Accurate Surface Remeshing and Parameterization , 2005 .

[3]  M. Pauly,et al.  Discrete scale axis representations for 3D geometry , 2010, ACM Trans. Graph..

[4]  Narendra Ahuja,et al.  Shape Representation Using a Generalized Potential Field Model , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Hans-Christian Hege,et al.  Fast visualization of plane-like structures in voxel data , 2002, IEEE Visualization, 2002. VIS 2002..

[6]  Steven J. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, ACM Trans. Graph..

[7]  Aly A. Farag,et al.  Variational Curve Skeletons Using Gradient Vector Flow , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Kaleem Siddiqi,et al.  Sampled medial loci for 3D shape representation , 2011, Comput. Vis. Image Underst..

[9]  Tong-Yee Lee,et al.  Skeleton extraction by mesh contraction , 2008, SIGGRAPH 2008.

[10]  Sang Won Bae,et al.  3D medial axis point approximation using nearest neighbors and the normal field , 2011, The Visual Computer.

[11]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[12]  Attila Kuba,et al.  Directional 3D Thinning Using 8 Subiterations , 1999, DGCI.

[13]  Chris Pudney,et al.  Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images , 1998, Comput. Vis. Image Underst..

[14]  Alexandru Telea,et al.  An Augmented Fast Marching Method for Computing Skeletons and Centerlines , 2002, VisSym.

[15]  Daniel Cohen-Or,et al.  Curve skeleton extraction from incomplete point cloud , 2009, ACM Trans. Graph..

[16]  Gábor Székely,et al.  Multiscale Medial Loci and Their Properties , 2003, International Journal of Computer Vision.

[17]  Benjamin B. Kimia,et al.  Surface Reconstruction from Point Clouds by Transforming the Medial Scaffold , 2007, Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007).

[18]  Kaleem Siddiqi,et al.  Hamilton-Jacobi Skeletons , 2002, International Journal of Computer Vision.

[19]  Mark Pauly,et al.  The scale axis transform , 2009, SCG '09.

[20]  Avneesh Sud Efficient computation of discrete Voronoi diagram and homotopy-preserving simplified medial axis of a 3d polyhedron , 2006 .

[21]  Tiow Seng Tan,et al.  Parallel Banding Algorithm to compute exact distance transform with the GPU , 2010, I3D '10.

[22]  J. Damon The global medial structure of regions in R 3 , 2006, 0903.0394.

[23]  Dinesh Manocha,et al.  Homotopy-preserving medial axis simplification , 2005, SPM '05.

[24]  Kaleem Siddiqi,et al.  Medial Representations: Mathematics, Algorithms and Applications , 2008 .

[25]  Balasubramanian Raman,et al.  Computing hierarchical curve-skeletons of 3D objects , 2005, The Visual Computer.

[26]  Jen-Hui Chuang,et al.  Skeletonization of Three-Dimensional Object Using Generalized Potential Field , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Ming Wan,et al.  Distance-field based skeletons for virtual navigation , 2001, Proceedings Visualization, 2001. VIS '01..

[28]  Jack Snoeyink,et al.  Reducing the memory required to find a geodesic shortest path on a large mesh , 2009, GIS.

[29]  Wim H. Hesselink,et al.  Euclidean Skeletons of Digital Image and Volume Data in Linear Time by the Integer Medial Axis Transform , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Tamal K. Dey,et al.  Defining and computing curve-skeletons with medial geodesic function , 2006, SGP '06.

[31]  Martin Rumpf,et al.  A Continuous Skeletonization Method Based on Level Sets , 2002, VisSym.

[32]  Alexandru Telea,et al.  Skeletonization and Distance Transforms of 3D Volumes Using Graphics Hardware , 2006, DGCI.

[33]  Tamal K. Dey,et al.  Approximating the Medial Axis from the Voronoi Diagram with a Convergence Guarantee , 2003, Algorithmica.

[34]  Kaleem Siddiqi,et al.  Sampled medial loci and boundary differential geometry , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[35]  Deborah Silver,et al.  Curve-Skeleton Properties, Applications, and Algorithms , 2007, IEEE Transactions on Visualization and Computer Graphics.

[36]  Benjamin B. Kimia,et al.  The Medial Scaffold of 3D Unorganized Point Clouds , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.