Quantum Algorithmic Complexities and Entropy

We review the basics of classical algorithmic complexity theory and two of its quantum extensions that have been prompted by the foreseeable existence of quantum computing devices. In particular, we will examine the relations between these extensions and the von Neumann entropy rate of generic quantum information sources of ergodic type.

[1]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..

[2]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[3]  Samuel L. Braunstein Quantum computing : where do we want to go tomorrow? , 2005 .

[4]  Leonard M. Adleman,et al.  Quantum Computability , 1997, SIAM J. Comput..

[5]  A. Wehrl General properties of entropy , 1978 .

[6]  V. Uspenskii,et al.  Can an individual sequence of zeros and ones be random? Russian Math , 1990 .

[7]  L. Levin,et al.  THE COMPLEXITY OF FINITE OBJECTS AND THE DEVELOPMENT OF THE CONCEPTS OF INFORMATION AND RANDOMNESS BY MEANS OF THE THEORY OF ALGORITHMS , 1970 .

[8]  C. Mora,et al.  ALGORITHMIC COMPLEXITY OF QUANTUM STATES , 2004 .

[9]  H. Briegel,et al.  Algorithmic complexity and entanglement of quantum states. , 2005, Physical review letters.

[10]  Dale P. Cruikshank,et al.  The Moons of Uranus, Neptune and Pluto. , 1985 .

[11]  Igor Bjelakovic,et al.  The Shannon-McMillan theorem for ergodic quantum lattice systems , 2002, ArXiv.

[12]  Markus Müller,et al.  Entropy and Quantum Kolmogorov Complexity: A Quantum Brudno’s Theorem , 2005, ArXiv.

[13]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  B. Kraus,et al.  QUANTUM KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS , 2006 .

[15]  H. White Algorithmic complexity of points in dynamical systems , 1993, Ergodic Theory and Dynamical Systems.

[16]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[17]  F. Hiai,et al.  The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .

[18]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[19]  Paul M. B. Vitányi,et al.  Quantum Kolmogorov complexity based on classical descriptions , 2001, IEEE Trans. Inf. Theory.

[20]  En-Hui Yang,et al.  Universal compression of ergodic quantum sources , 2003, Quantum Inf. Comput..

[21]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.

[22]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[23]  P. Rowley-Conwy,et al.  Gazelle Killing in Stone Age Syria , 1987 .

[24]  G. Alber From the Foundations of Quantum Theory to Quantum Technology — an Introduction , 2001 .

[25]  Gregory J. Chaitin,et al.  A recent technical report , 1974, SIGA.

[26]  F. Hiai,et al.  Entropy Densities for Algebraic States , 1994 .

[27]  Sophie Laplante,et al.  Quantum Kolmogorov Complexity , 2001, J. Comput. Syst. Sci..

[28]  Andrei N. Kolmogorov,et al.  Logical basis for information theory and probability theory , 1968, IEEE Trans. Inf. Theory.