Cyclic codes over ℤ4 + uℤ4

In this paper, we study cyclic codes over the ring R = ℤ<sub>4</sub> + uℤ<sub>4</sub>, u<sup>2</sup> = 0. We discuss the Galois ring extensions of R and the ideal structure of these extensions. We have studied cyclic codes of odd lengths over R and also presented 1-generator cyclic codes over R interms nth roots of unity. Some examples are given to illustrate the results.

[1]  Suat Karadeniz,et al.  Cyclic codes over F2+uF2+vF2+uvF2 , 2011, Des. Codes Cryptogr..

[2]  Maheshanand Bhaintwal,et al.  On quasi-cyclic codes over Zq , 2009, Applicable Algebra in Engineering, Communication and Computing.

[3]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[4]  Sergio R. López-Permouth,et al.  Cyclic Codes over the Integers Modulopm , 1997 .

[5]  Suat Karadeniz,et al.  Linear Codes over Z_4+uZ_4: MacWilliams identities, projections, and formally self-dual codes , 2014, Finite Fields Their Appl..

[6]  Graham H. Norton,et al.  On the Structure of Linear and Cyclic Codes over a Finite Chain Ring , 2000, Applicable Algebra in Engineering, Communication and Computing.

[7]  Sergio R. López-Permouth,et al.  Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.

[8]  YildizBahattin,et al.  Linear codes over Z4+uZ4 , 2014 .

[9]  B. R. McDonald Finite Rings With Identity , 1974 .

[10]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[11]  Vera Pless,et al.  Cyclic codes and quadratic residue codes over Z4 , 1996, IEEE Trans. Inf. Theory.

[12]  Parampalli Udaya,et al.  Cyclic Codes and Self-Dual Codes Over F2 + uF2 , 1999, IEEE Trans. Inf. Theory.

[13]  Bahattin Yildiz,et al.  On cyclic codes over ℤ4 + uℤ4 and their ℤ4-images , 2014, Int. J. Inf. Coding Theory.

[14]  Minjia Shi,et al.  Some Results on Cyclic Codes Over ${F}_{2}+v{F}_{2}$ , 2010, IEEE Transactions on Information Theory.