Global stability analysis of an SVEIR epidemic model with general incidence rate

[1]  N. Huang,et al.  Optimal control analysis of a tuberculosis model , 2017, Applied Mathematical Modelling.

[2]  N. Huang,et al.  A note on global stability for a tuberculosis model , 2017 .

[3]  Delfim F. M. Torres,et al.  Existence of positive solutions to a discrete fractional boundary value problem and corresponding Lyapunov-type inequalities , 2017, Opuscula Mathematica.

[4]  Ranjit Kumar Upadhyay,et al.  Modeling the virus dynamics in computer network with SVEIR model and nonlinear incident rate , 2017 .

[5]  Nikolaos S. Papageorgiou,et al.  Sensitivity analysis for optimal control problems governed by nonlinear evolution inclusions , 2017, 1704.06770.

[6]  M. Khan,et al.  Global stability and vaccination of an SEIVR epidemic model with saturated incidence rate , 2016 .

[7]  G. Röst,et al.  Global stability for SIR and SIRS models with nonlinear incidence and removal terms via Dulac functions , 2016 .

[8]  M. Khan,et al.  Global dynamics of SEIRS epidemic model with non-linear generalized incidences and preventive vaccination , 2015 .

[9]  Yu Yang,et al.  Global stability of an SEIQV epidemic model with general incidence rate , 2015 .

[10]  Khalid Hattaf,et al.  Optimal Control of a Delayed SIRS Epidemic Model with Vaccination and Treatment , 2015, Acta biotheoretica.

[11]  Puntani Pongsumpun,et al.  Dynamics of a New Strain of the H1N1 Influenza A Virus Incorporating the Effects of Repetitive Contacts , 2014, Comput. Math. Methods Medicine.

[12]  L Billard,et al.  A multi-stage compartmental model for HIV-infected individuals: I--waiting time approach. , 2014, Mathematical biosciences.

[13]  Manmohan Singh,et al.  Numerical study of SARS epidemic model with the inclusion of diffusion in the system , 2014, Applied Mathematics and Computation.

[14]  Francesco Pappalardo,et al.  Persistence analysis in a Kolmogorov-type model for cancer-immune system competition , 2013 .

[15]  Xingbo Liu,et al.  Stability analysis of an SEIQV epidemic model with saturated incidence rate , 2012 .

[16]  Vicentiu D. Rădulescu,et al.  Nonlinear PDEs: Mathematical Models in Biology, Chemistry and Population Genetics , 2011 .

[17]  B. Buonomo,et al.  Global stability for a four dimensional epidemic model , 2011 .

[18]  C. Bianca,et al.  Immune System Network and Cancer Vaccine , 2011 .

[19]  Xueyong Zhou,et al.  Analysis of stability and bifurcation for an SEIV epidemic model with vaccination and nonlinear incidence rate , 2011 .

[20]  Ping Bi,et al.  BIFURCATIONS OF AN SIRS EPIDEMIC MODEL WITH NONLINEAR INCIDENCE RATE , 2010 .

[21]  Fangwei Wang,et al.  Stability analysis of a SEIQV epidemic model for rapid spreading worms , 2010, Comput. Secur..

[22]  Rui Xu,et al.  Global stability of a delayed SEIRS epidemic model with saturation incidence rate , 2010 .

[23]  Dongmei Xiao,et al.  Influence of latent period and nonlinearincidence rate on the dynamics of SIRS epidemiological models , 2009 .

[24]  Xue-Zhi Li,et al.  Analysis of a SEIV epidemic model with a nonlinear incidence rate , 2009 .

[25]  Xianning Liu,et al.  Backward bifurcation of an epidemic model with saturated treatment function , 2008 .

[26]  V. Sree Hari Rao,et al.  Modeling the spread of bird flu and predicting outbreak diversity , 2007, Nonlinear Analysis: Real World Applications.

[27]  Shigui Ruan,et al.  Global analysis of an epidemic model with nonmonotone incidence rate , 2006, Mathematical Biosciences.

[28]  Wendi Wang Backward bifurcation of an epidemic model with treatment. , 2006, Mathematical biosciences.

[29]  James Watmough,et al.  An sveir model for assessing potential impact of an imperfect anti-sars vaccine. , 2006, Mathematical biosciences and engineering : MBE.

[30]  Andrei Korobeinikov,et al.  Lyapunov Functions and Global Stability for SIR and SIRS Epidemiological Models with Non-Linear Transmission , 2006, Bulletin of mathematical biology.

[31]  Y. N. Kyrychko,et al.  Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate , 2005 .

[32]  S. Ruan,et al.  Bifurcations in an epidemic model with constant removal rate of the infectives , 2004 .

[33]  Shigui Ruan,et al.  Dynamical behavior of an epidemic model with a nonlinear incidence rate , 2003 .

[34]  James S. Muldowney,et al.  On R.A. Smith's Autonomous Convergence Theorem , 1995 .

[35]  Shigui Ruan,et al.  Uniform persistence and flows near a closed positively invariant set , 1994 .

[36]  V. Capasso Mathematical Structures of Epidemic Systems , 1993, Lecture Notes in Biomathematics.

[37]  K. Schmitt,et al.  Permanence and the dynamics of biological systems. , 1992, Mathematical biosciences.

[38]  R. Ruth,et al.  Stability of dynamical systems , 1988 .

[39]  G. Serio,et al.  A generalization of the Kermack-McKendrick deterministic epidemic model☆ , 1978 .

[40]  Vincenzo Capasso,et al.  Global Solution for a Diffusive Nonlinear Deterministic Epidemic Model , 1978 .

[41]  Robert H. Martin Logarithmic norms and projections applied to linear differential systems , 1974 .

[42]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[43]  S. Rush,et al.  The complete heart-lead relationship in the Einthoven triangle. , 1968, The Bulletin of mathematical biophysics.

[44]  P. Hartman Ordinary Differential Equations , 1965 .

[45]  Petro Pukach,et al.  On nonexistence of global in time solution for a mixed problem for a nonlinear evolution equation with memory generalizing the Voigt-Kelvin rheological model , 2017 .

[46]  Gabriele Eisenhauer,et al.  Elements Of Mathematical Ecology , 2016 .

[47]  Murray E. Alexander,et al.  Bifurcation Analysis of an SIRS Epidemic Model with Generalized Incidence , 2005, SIAM J. Appl. Math..

[48]  Y. Iwasa,et al.  Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models , 1986, Journal of mathematical biology.

[49]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .