On (k, n) Visual Cryptography Scheme with t Essential Parties

In visual cryptography schemes (VCS), we often denote the set of all parties by \(P=\{1,2,\cdots ,n\}\). Arumugam et al. proposed a \((k,n)\)-VCS with one essential party recently, in which only subset \(S\) of parties satisfying \(S\subseteq P\) and \(|S|\ge k\) and \(1\in S\) can recover the secret. In this paper, we extend Arumugam et al.’s idea and propose a \((k,n)\)-VCS with \(t\) essential parties, say \((k,n,t)\)-VCS for brevity, in which only subset \(S\) of parties satisfying \(S\subseteq P\) and \(|S|\ge k\) and \(\{1,2,\ldots ,t\}\in S\) can recover the secret. Furthermore, some bounds for the optimal pixel expansion and optimal relative contrast of \((k,n,t)\)-VCS are derived.

[1]  Feng Liu,et al.  The alignment problem of visual cryptography schemes , 2009, Des. Codes Cryptogr..

[2]  Ching-Nung Yang,et al.  $k$ Out of $n$ Region Incrementing Scheme in Visual Cryptography , 2012, IEEE Trans. Circuits Syst. Video Technol..

[3]  Wen-Guey Tzeng,et al.  Cheating Prevention in Visual Cryptography , 2007, IEEE Transactions on Image Processing.

[4]  Moni Naor,et al.  Visual Cryptography , 1994, Encyclopedia of Multimedia.

[5]  Douglas R. Stinson,et al.  Threshold Visual Cryptography Schemes with Specified Whiteness Levels of Reconstructed Pixels , 2002, Des. Codes Cryptogr..

[6]  Alfredo De Santis,et al.  Visual Cryptography for General Access Structures , 1996, Inf. Comput..

[7]  Tzung-Her Chen,et al.  (Designs, Codes and Cryptography,38(2):219-236)Cheating in Visual Cryptography , 2006 .

[8]  Xiaobo Li,et al.  Towards Shift Tolerant Visual Secret Sharing Schemes , 2010, IEEE Transactions on Information Forensics and Security.

[9]  Feng Liu,et al.  Threshold visual secret sharing by random grids with improved contrast , 2013, J. Syst. Softw..

[10]  Shyong Jian Shyu,et al.  Efficient Construction for Region Incrementing Visual Cryptography , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[11]  Atulya K. Nagar,et al.  On (k, n)*-visual cryptography scheme , 2014, Des. Codes Cryptogr..

[12]  Alfredo De Santis,et al.  On the Contrast in Visual Cryptography Schemes , 1999, Journal of Cryptology.

[13]  Bimal K. Roy,et al.  A New Black and White Visual Cryptographic Scheme for General Access Structures , 2004, INDOCRYPT.

[14]  Feng Liu,et al.  K out of K Extended Visual Cryptography Scheme by Random Grids , 2014, Signal Process..

[15]  Stelvio Cimato,et al.  Visual cryptography schemes with optimal pixel expansion , 2006, Theor. Comput. Sci..

[16]  Stefan Droste,et al.  New Results on Visual Cryptography , 1996, CRYPTO.

[17]  Gwoboa Horng,et al.  Comment on “Cheating Prevention in Visual Cryptography” , 2012, IEEE Transactions on Image Processing.

[18]  Ran-Zan Wang,et al.  Region Incrementing Visual Cryptography , 2009, IEEE Signal Processing Letters.

[19]  Hans Ulrich Simon,et al.  Contrast-optimal k out of n secret sharing schemes in visual cryptography , 2000, Theor. Comput. Sci..

[20]  Eric R. Verheul,et al.  Constructions and Properties of k out of n Visual Secret Sharing Schemes , 1997, Des. Codes Cryptogr..

[21]  Wen-Guey Tzeng,et al.  A New Approach for Visual Cryptography , 2002, Des. Codes Cryptogr..

[22]  Gwoboa Horng,et al.  Cheating in Visual Cryptography , 2006, Des. Codes Cryptogr..