Simulations of Ion Thruster Plume–Spacecraft Interactions on Parallel Supercomputer

A parallel three-dimensional electrostatic Particle-In-Cell (PIC) code is developed for large-scale simulations of ion thruster plume-spacecraft interactions on parallel supercomputers. This code is based on a newly developed immersed finite-element (IFE) PIC. The IFE-PIC is designed to handle complex boundary conditions accurately while maintaining the computational speed of the standard PIC code. Domain decomposition is used in both field solve and particle push to divide the computation among processors. A high-resolution simulation of multiple ion thruster plume interactions for a realistic spacecraft using a domain enclosing the entire solar array panel is carried out to demonstrate the capability of the code. A standard finite-difference PIC (FD-PIC) code is also parallelized for comparison. Both the IFE-PIC and FD-PIC run with similar overall speed, and the IFE-PIC achieves a high parallel efficiency of ges 90%

[1]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[2]  Viktor K. Decyk,et al.  A general concurrent algorithm for plasma particle-in-cell simulation codes , 1989 .

[3]  Viktor K. Decyk,et al.  3D electromagnetic plasma particle simulations on a MIMD parallel computer , 1995 .

[4]  R. W. Hockney,et al.  Body-fitted electromagnetic PIC software for use on parallel computers , 1995 .

[5]  John P. Verboncoeur,et al.  An object-oriented electromagnetic PIC code , 1995 .

[6]  D. Hastings,et al.  ION-THRUSTER PLUME MODELING FOR BACKFLOW CONTAMINATION , 1996 .

[7]  Daniel E. Hastings,et al.  Three-dimensional plasma particle-in-cell calculations of ion thruster backflow contamination , 1996 .

[8]  Iain D. Boyd,et al.  Hybrid Monte Carlo -Particle-in-Cell Simulation of an Ion Thruster Plume , 1999 .

[9]  S. R. Karmesin,et al.  Three-Dimensional Deformable Grid Electromagnetic Particle-in-cell for Parallel Computers , 1999 .

[10]  James E. Polk,et al.  Deep Space One Investigations of Ion Propulsion Plasma Environment , 2000 .

[11]  Yanping Lin,et al.  A rectangular immersed finite element space for interface problems , 2001 .

[12]  Iain D. Boyd,et al.  Review of Hall Thruster Plume Modeling , 2001 .

[13]  David E. Brinza,et al.  Deep Space 1 Measurements of Ion Propulsion Contamination , 2001 .

[14]  David E. Brinza,et al.  Three-Dimensional Particle Simulations of Ion Propulsion Plasma Environment for Deep Space 1 , 2001 .

[15]  Hans-Paul Schwefel,et al.  Advances in Computational Intelligence: Theory and Practice , 2002 .

[16]  I. Katz,et al.  A High Power Ion Thruster Plume Model , 2004 .

[17]  Viktor K. Decyk,et al.  UCLA Parallel PIC Framework , 2004, Comput. Phys. Commun..

[18]  J. Wang,et al.  Three-dimensional electromagnetic particle-in-cell with Monte Carlo collision simulations on three MIMD parallel computers , 1997, The Journal of Supercomputing.

[19]  R. Kafafy Immersed Finite Element Particle-In-Cell Simulations of Ion Propulsion , 2005 .

[20]  Stephen D. Fergason,et al.  Ion Thruster Plume Simulation Using Clustered PC Workstations , 2005 .

[21]  Dale C. Ferguson,et al.  Ion Engine Plume Interaction Calculations for Prototypical Prometheus 1 , 2005 .

[22]  R. Kafafy,et al.  Three‐dimensional immersed finite element methods for electric field simulation in composite materials , 2005 .

[23]  J. Wang,et al.  A Hybrid Grid Immersed Finite Element Particle-in-Cell Algorithm for Modeling Spacecraft–Plasma Interactions , 2006, IEEE Transactions on Plasma Science.