Tuning of Charge Transfer Assisted Phase Transition and Slow Magnetic Relaxation Functionalities in {Fe(9-x)Co(x)[W(CN)8]6} (x = 0-9) Molecular Solid Solution.

Precisely controlled stoichiometric mixtures of Co(2+) and Fe(2+) metal ions were combined with the [W(V)(CN)8](3-) metalloligand in a methanolic solution to produce a series of trimetallic cyanido-bridged {Fe(9-x)Co(x)[W(CN)8]6(MeOH)24}·12MeOH (x = 0, 1, ..., 8, 9; compounds 0, 1, ..., 8, 9) clusters. All the compounds, 0-9, are isostructural, and consist of pentadecanuclear clusters of a six-capped body-centered cube topology, capped by methanol molecules which are coordinated to 3d metal centers. Thus, they can be considered as a unique type of a cluster-based molecular solid solution in which different Co/Fe metal ratios can be introduced while preserving the coordination skeleton and the overall molecular architecture. Depending on the Co/Fe ratio, 0-9 exhibit an unprecedented tuning of magnetic functionalities which relate to charge transfer assisted phase transition effects and slow magnetic relaxation effects. The iron rich 0-5 phases exhibit thermally induced reversible structural phase transitions in the 180-220 K range with the critical temperatures being linearly dependent on the value of x. The phase transition in 0 is accompanied by (HS)Fe(II) W(V) ↔ (HS)Fe(III) W(IV) charge transfer (CT) and the additional minor contribution of a Fe-based spin crossover (SCO) effect. The Co-containing 1-5 phases reveal two simultaneous electron transfer processes which explore (HS)Fe(II) W(V) ↔ (HS)Fe(III) W(IV) CT and the more complex (HS)Co(II) W(V) ↔ (LS)Co(III) W(IV) charge transfer induced spin transition (CTIST). Detailed structural, spectroscopic, and magnetic studies help explain the specific role of both types of CN(-)-bridged moieties: the Fe-NC-W linkages activate the molecular network toward a phase transition, while the subsequent Co-W CTIST enhances structural changes and enlarges thermal hysteresis of the magnetic susceptibility. On the second side of the 0-9 series, the vanishing phase transition in the cobalt rich 6-9 phases results in the high-spin ground state, and in the occurrence of a slow magnetic relaxation process at low temperatures. The energy barrier of the magnetic relaxation gradually increases with the increasing value of x, reaching up to ΔE/kB = 22.3(3) K for compound 9.

[1]  C. Näther,et al.  New topology of CN-bridged clusters: dodecanuclear face-sharing defective cubes based on octacyanometallates(iv) and nickel(ii) with diimine ligands. , 2015, Dalton transactions.

[2]  A. Katrusiak,et al.  Enforcing Multifunctionality: A Pressure-Induced Spin-Crossover Photomagnet. , 2015, Journal of the American Chemical Society.

[3]  C. Kapusta,et al.  Hydration-switchable charge transfer in the first bimetallic assembly based on the [Ni(cyclam)](3+)--magnetic CN-bridged chain {(H3O)[Ni(III)(cyclam)][Fe(II)(CN)6]·5H2O}n. , 2015, Chemical communications.

[4]  S. Ohkoshi,et al.  Implementation of Chirality into High-Spin Ferromagnetic CoII9WV6 and NiII9WV6 Cyanido-Bridged Clusters , 2015 .

[5]  L. Chibotaru,et al.  Optical Activity and Dehydration-Driven Switching of Magnetic Properties in Enantiopure Cyanido-Bridged Co(II)3W(V)2 Trigonal Bipyramids. , 2015, Inorganic chemistry.

[6]  Andrew J. Brown,et al.  A Trigonal-Pyramidal Erbium(III) Single-Molecule Magnet. , 2015, Angewandte Chemie.

[7]  W. Nitek,et al.  Larger pores and higher Tc: {[Ni(cyclam)]3[W(CN)8]2·solv}n – a new member of the largest family of pseudo-polymorphic isomers among octacyanometallate-based assemblies , 2015 .

[8]  K. Nakabayashi,et al.  Fe(II) spin-crossover phenomenon in the pentadecanuclear {Fe9[Re(CN)8]6} spherical cluster. , 2015, Angewandte Chemie.

[9]  P. Cheng,et al.  Toward heterometallic single-molecule magnets: Synthetic strategy, structures and properties of 3d–4f discrete complexes , 2015 .

[10]  G. Molnár,et al.  Metal Substitution Effects on the Charge Transport and Spin Crossover Properties of [Fe1–xZnx(Htrz)2(trz)](BF4) (trz = Triazole) , 2015 .

[11]  W. Wernsdorfer,et al.  Magnetic interaction between a radical spin and a single-molecule magnet in a molecular spin-valve. , 2015, ACS nano.

[12]  V. Dorcet,et al.  Multiple single-molecule magnet behaviors in dysprosium dinuclear complexes involving a multiple functionalized tetrathiafulvalene-based ligand. , 2015, Inorganic chemistry.

[13]  B. Abrahams,et al.  Heterometallic 3d-4f single-molecule magnets: ligand and metal ion influences on the magnetic relaxation. , 2015, Inorganic chemistry.

[14]  Jianguo Zhu,et al.  Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. , 2015, Chemical reviews.

[15]  S. Chorazy,et al.  Magnetic clusters based on octacyanidometallates , 2015 .

[16]  F. Lloret,et al.  Dicopper(II) metallacyclophanes as multifunctional magnetic devices: a joint experimental and computational study. , 2015, Accounts of chemical research.

[17]  J. Rouquette,et al.  A high-temperature molecular ferroelectric Zn/Dy complex exhibiting single-ion-magnet behavior and lanthanide luminescence. , 2015, Angewandte Chemie.

[18]  Tetsuya Nakamura,et al.  A ferromagnetically coupled Fe42 cyanide-bridged nanocage , 2015, Nature Communications.

[19]  R. Clérac,et al.  Metal-to-metal electron transfer in Co/Fe Prussian Blue molecular analogues: the ultimate miniaturization. , 2014, Journal of the American Chemical Society.

[20]  M. Tong,et al.  A zigzag DyIII4 cluster exhibiting single-molecule magnet, ferroelectric and white-light emitting properties , 2014 .

[21]  W. Wernsdorfer,et al.  Ising-type magnetic anisotropy and single molecule magnet behaviour in mononuclear trigonal bipyramidal Co(II) complexes , 2014 .

[22]  K. Nakabayashi,et al.  Green to Red Luminescence Switchable by Excitation Light in Cyanido-Bridged TbIII–WV Ferromagnet , 2014 .

[23]  Graham N. Newton,et al.  Cyanide-bridged decanuclear cobalt-iron cage. , 2014, Inorganic chemistry.

[24]  Z. Trávníček,et al.  Slow magnetic relaxation in octahedral cobalt(II) field-induced single-ion magnet with positive axial and large rhombic anisotropy. , 2014, Inorganic chemistry.

[25]  Graham N. Newton,et al.  Programmable spin-state switching in a mixed-valence spin-crossover iron grid , 2014, Nature Communications.

[26]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[27]  S. Ohkoshi,et al.  Humidity dependency of the thermal phase transition of a cyano bridged Co–W bimetal assembly , 2014 .

[28]  K. Nakabayashi,et al.  Charge transfer phase transition with reversed thermal hysteresis loop in the mixed-valence Fe9[W(CN)8]6·xMeOH cluster. , 2014, Chemical communications.

[29]  A. Namai,et al.  90-degree optical switching of output second-harmonic light in chiral photomagnet , 2013, Nature Photonics.

[30]  K. Yoshizawa,et al.  A light-induced spin crossover actuated single-chain magnet , 2013, Nature Communications.

[31]  Yuanjing Cui,et al.  A highly sensitive mixed lanthanide metal-organic framework self-calibrated luminescent thermometer. , 2013, Journal of the American Chemical Society.

[32]  N. Zhang,et al.  Synthesis of hierarchical dendritic micro-nano structure CoxFe1−x alloy with tunable electromagnetic absorption performance , 2013 .

[33]  Liviu F Chibotaru,et al.  Magnetic relaxation pathways in lanthanide single-molecule magnets. , 2013, Nature chemistry.

[34]  Yan-Qin Wang,et al.  Unusual composition dependence of magnetic relaxation for Co(II)(1-x)Ni(II)(x) chain-based metal-organic frameworks. , 2013, Chemical communications.

[35]  Frank Neese,et al.  Magnetic blocking in a linear iron(I) complex. , 2013, Nature chemistry.

[36]  R. Lescouëzec,et al.  W-Co discrete complex exhibiting photo- and thermo-induced magnetisation. , 2013, Chemistry.

[37]  S. Ohkoshi,et al.  Supramolecular Chains and Coordination Nanowires Constructed of High-Spin CoII9WV6 Clusters and 4,4′-bpdo Linkers , 2013 .

[38]  E. Cremades,et al.  Mononuclear single-molecule magnets: tailoring the magnetic anisotropy of first-row transition-metal complexes. , 2013, Journal of the American Chemical Society.

[39]  T. Maji,et al.  Bimodal Magneto-Luminescent Dysprosium (DyIII)-Potassium (KI)-Oxalate Framework: Magnetic Switchability with High Anisotropic Barrier and Solvent Sensing , 2013 .

[40]  R. Winpenny,et al.  Lanthanide single-molecule magnets. , 2013, Chemical reviews.

[41]  Yan-Qin Wang,et al.  Manganese(II), iron(II), and mixed-metal metal-organic frameworks based on chains with mixed carboxylate and azide bridges: magnetic coupling and slow relaxation. , 2013, Inorganic chemistry.

[42]  W. Fu,et al.  Effect of Metal Dilution on the Thermal Spin Transition of (FexZn1-x(bapbpy)(NCS)2) (‡) , 2013 .

[43]  G. Mínguez Espallargas,et al.  Dynamic magnetic MOFs. , 2013, Chemical Society reviews.

[44]  B. Marszalek,et al.  Co-NC-W and Fe-NC-W electron-transfer channels for thermal bistability in trimetallic {Fe6Co3[W(CN)8]6} cyanido-bridged cluster. , 2013, Angewandte Chemie.

[45]  J. Rodríguez-Carvajal,et al.  The role of order-disorder transitions in the quest for molecular multiferroics: structural and magnetic neutron studies of a mixed valence iron(II)-iron(III) formate framework. , 2012, Journal of the American Chemical Society.

[46]  K. Nakabayashi,et al.  Conjunction of chirality and slow magnetic relaxation in the supramolecular network constructed of crossed cyano-bridged Co(II)-W(V) molecular chains. , 2012, Journal of the American Chemical Society.

[47]  Qinglun Wang,et al.  Crystal-to-crystal transformation of magnets based on heptacyanomolybdate(III) involving dramatic changes in coordination mode and ordering temperature. , 2012, Angewandte Chemie.

[48]  F. Lloret,et al.  Multiferroics by rational design: implementing ferroelectricity in molecule-based magnets. , 2012, Angewandte Chemie.

[49]  S. Ohkoshi,et al.  Photomagnetism in cyano-bridged bimetal assemblies. , 2012, Accounts of chemical research.

[50]  J. Gomes,et al.  Bifunctional mixed-lanthanide cyano-bridged coordination polymers Ln(0.5)Ln'(0.5)(H2O)5[W(CN)8] (Ln/Ln' = Eu3+/Tb3+, Eu3+/Gd3+, Tb3+/Sm3+). , 2012, Inorganic chemistry.

[51]  H. Oshio,et al.  A light-induced phase exhibiting slow magnetic relaxation in a cyanide-bridged [Fe4Co2] complex. , 2012, Angewandte Chemie.

[52]  Cheng Wang,et al.  A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols. , 2012, Journal of the American Chemical Society.

[53]  Tomoyuki Matsuda,et al.  Photoinduced Magnetization with a High Curie Temperature and a Large Coercive Field in a Co‐W Bimetallic Assembly , 2012 .

[54]  Shinji Kanegawa,et al.  Photoswitchable dynamic magnetic relaxation in a well-isolated {Fe2Co} double-zigzag chain. , 2012, Angewandte Chemie.

[55]  K. Yoshizawa,et al.  Reversible electron transfer in a linear {Fe2Co} trinuclear complex induced by thermal treatment and photoirraditaion. , 2012, Angewandte Chemie.

[56]  Zhiyong Guo,et al.  A luminescent mixed-lanthanide metal-organic framework thermometer. , 2012, Journal of the American Chemical Society.

[57]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical reviews.

[58]  L. Brammer,et al.  Tuning the magneto-structural properties of non-porous coordination polymers by HCl chemisorption , 2012, Nature Communications.

[59]  R. Clérac,et al.  Controlling thermally induced electron transfer in cyano-bridged molecular squares: from solid state to solution. , 2011, Chemistry.

[60]  O. Fabelo,et al.  High proton conduction in a chiral ferromagnetic metal-organic quartz-like framework. , 2011, Journal of the American Chemical Society.

[61]  Kazuya Saito,et al.  Cyanide-bridged [Fe8M6] clusters displaying single-molecule magnetism (M=Ni) and electron-transfer-coupled spin transitions (M=Co). , 2011, Chemistry.

[62]  W. Wernsdorfer,et al.  [MnIII6O3Ln2] single-molecule magnets: increasing the energy barrier above 100 K. , 2011, Chemistry.

[63]  S. Ohkoshi,et al.  Light-induced spin-crossover magnet. , 2011, Nature chemistry.

[64]  C. Duhayon,et al.  Self assembly of a FeIII(L) complex with octacyano metallates [MIV(CN)8]4− (L = pentadentate macrocyclic ligand, M = Mo, W): Crystal structure and magnetic properties , 2011 .

[65]  R. Clérac,et al.  Irreversible solvent-driven conversion in cyanometalate {Fe2Ni}n (n=2, 3) single-molecule magnets. , 2011, Chemical communications.

[66]  M. Verdaguer,et al.  The fruitful introduction of chirality and control of absolute configurations in molecular magnets. , 2011, Chemical Society reviews.

[67]  B. Gaweł,et al.  Double switching of a magnetic coordination framework through intraskeletal molecular rearrangement. , 2011, Angewandte Chemie.

[68]  H. Nakao,et al.  Controlled intramolecular electron transfers in cyanide-bridged molecular squares by chemical modifications and external stimuli. , 2011, Journal of the American Chemical Society.

[69]  S. Ohkoshi,et al.  Multifunctional Magnetic Molecular {[MnII(urea)2(H2O)]2[NbIV(CN)8]}n System: Magnetization-Induced SHG in the Chiral Polymorph , 2011 .

[70]  Joseph M. Zadrozny,et al.  Slow magnetic relaxation and charge-transfer in cyano-bridged coordination clusters incorporating [Re(CN)(7)](3-/4-). , 2010, Inorganic chemistry.

[71]  K. Dunbar,et al.  Temperature and light induced bistability in a Co3[Os(CN)6]2 6 H2O Prussian blue analog. , 2010, Journal of the American Chemical Society.

[72]  E. Cremades,et al.  A new family of oxime-based hexanuclear manganese(III) single molecule magnets with high anisotropy energy barriers. , 2010, Chemical communications.

[73]  K. Dunbar,et al.  A docosanuclear {Mo8Mn14} cluster based on [Mo(CN)7]4-. , 2010, Angewandte Chemie.

[74]  E. Coronado,et al.  A chiral ferromagnetic molecular metal. , 2010, Journal of the American Chemical Society.

[75]  M. Murrie Cobalt(II) single-molecule magnets. , 2010, Chemical Society reviews.

[76]  Jennifer S. Mathieson,et al.  Ferromagnetically coupled chiral cyanide-bridged {Ni₆Fe₄} cages. , 2010, Dalton transactions.

[77]  Song Gao,et al.  Strategies towards single-chain magnets , 2010 .

[78]  S. Ohkoshi,et al.  High proton conductivity in prussian blue analogues and the interference effect by magnetic ordering. , 2010, Journal of the American Chemical Society.

[79]  C. Duhayon,et al.  Enhanced ion anisotropy by nonconventional coordination geometry: single-chain magnet behavior for a [{Fe(II)L}2{Nb(IV)(CN)8}] helical chain compound designed with heptacoordinate Fe(II). , 2010, Journal of the American Chemical Society.

[80]  J. Musfeldt,et al.  An unprecedented charge transfer induced spin transition in an Fe-Os cluster. , 2010, Angewandte Chemie.

[81]  C. Duhayon,et al.  First heterotrimetallic {3 d-4 d-4 f} single chain magnet, constructed from anisotropic high-spin heterometallic nodes and paramagnetic spacers. , 2009, Chemistry.

[82]  A. Powell,et al.  Strategies towards single molecule magnets based on lanthanide ions , 2009 .

[83]  C. Kapusta,et al.  Iron(II)-octacyanoniobate(IV) ferromagnet with T(C) 43 K. , 2009, Dalton transactions.

[84]  W. Wernsdorfer,et al.  Molecules based on M(v) (M=Mo, W) and Ni(II) ions: a new class of trigonal bipyramidal cluster and confirmation of SMM behavior for the pentadecanuclear molecule {NiII[NiII(tmphen)(MeOH)]6[Ni(H2O)3]2[micro-CN]30[WV(CN)3]6}. , 2009, Dalton transactions.

[85]  L. Carlos,et al.  Luminescent and magnetic cyano-bridged coordination polymers containing 4d-4f ions: toward multifunctional materials. , 2009, Inorganic chemistry.

[86]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[87]  A. Talarico,et al.  Magnetic memory of a single-molecule quantum magnet wired to a gold surface. , 2009, Nature materials.

[88]  Joan Cano,et al.  Magnetic properties of six-coordinated high-spin cobalt(II) complexes: Theoretical background and its application , 2008 .

[89]  G. Rikken,et al.  Strong magneto-chiral dichroism in enantiopure chiral ferromagnets. , 2008, Nature materials.

[90]  Tomoyuki Matsuda,et al.  Observation of an iron(II) spin-crossover in an iron octacyanoniobate-based magnet. , 2008, Angewandte Chemie.

[91]  W. Wernsdorfer,et al.  Molecular spintronics using single-molecule magnets. , 2008, Nature materials.

[92]  Tomoyuki Matsuda,et al.  Crystal Structure, Charge-Transfer-Induced Spin Transition, and Photoreversible Magnetism in a Cyano-Bridged Cobalt−Tungstate Bimetallic Assembly , 2008 .

[93]  R. Clérac,et al.  Magnetic and optical bistability driven by thermally and photoinduced intramolecular electron transfer in a molecular cobalt-iron prussian blue analogue. , 2008, Journal of the American Chemical Society.

[94]  S. Clima,et al.  Effect of the metal environment on the ferromagnetic interaction in the Co-NC-W pairs of octacyanotungstate(V)-Cobalt(II) three-dimensional networks. , 2007, Inorganic chemistry.

[95]  M. Mikuriya,et al.  [PPh4]3[W(CN)7(O2)].4H2O as the representative of the [M(L)7(LL)] class for nine-coordinate complexes. , 2006, Inorganic chemistry.

[96]  R. Podgajny,et al.  Supramolecular coordination networks based on octacyanometalates: From structure to function , 2006 .

[97]  S. Parkin,et al.  An S = 2 cyanide-bridged trinuclear Fe(III)2Ni(II) single-molecule magnet. , 2006, Inorganic chemistry.

[98]  J. Long,et al.  Symmetry-breaking substitutions of [Re(CN)8]3- into the centered, face-capped octahedral clusters (CH3OH)24M9M'6(CN)48 (M = Mn, Co; M = Mo, W). , 2006, Dalton transactions.

[99]  K. Hashimoto,et al.  Noncollinear spin structure inSmxTb1−x[Cr(CN)6]∙4H2Ohaving orthogonal single-ion anisotropies , 2006 .

[100]  W. Wernsdorfer,et al.  An S = 6 cyanide-bridged octanuclear FeIII4NiII4 complex that exhibits slow relaxation of the magnetization. , 2006, Journal of the American Chemical Society.

[101]  W. Wernsdorfer,et al.  The search for 3d-4f single-molecule magnets: synthesis, structure and magnetic properties of a [Mn(III)2Dy(III)2] cluster. , 2005, Chemical communications.

[102]  X. You,et al.  Octacyanometallate-based single-molecule magnets: Co(II)9M(V)6 (M = W, Mo). , 2005, Journal of the American Chemical Society.

[103]  K. Hashimoto,et al.  A large thermal hysteresis loop produced by a charge-transfer phase transition in a rubidium manganese hexacyanoferrate. , 2004, Inorganic chemistry.

[104]  F. Tuna,et al.  Substantial increase of the ordering temperature for [MnII/MoIII(CN)7]-based magnets as a function of the 3d ion site geometry: example of two supramolecular materials with Tc = 75 and 106 K. , 2003, Inorganic chemistry.

[105]  C. Rovira,et al.  A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties , 2003, Nature materials.

[106]  R. Sessoli,et al.  Quantum tunneling of magnetization and related phenomena in molecular materials. , 2003, Angewandte Chemie.

[107]  H. Stoeckli-Evans,et al.  High-spin molecules: synthesis, X-ray characterization, and magnetic behavior of two new cyano-bridged Ni(II)(9)Mo(V)(6) and Ni(II)(9)W(V)(6) clusters with a S = 12 ground state. , 2002, Inorganic chemistry.

[108]  K. Hashimoto,et al.  Control of charge-transfer-induced spin transition temperature on cobalt-iron Prussian blue analogues. , 2002, Inorganic chemistry.

[109]  V. Laukhin,et al.  Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound , 2000, Nature.

[110]  A. Fujishima,et al.  A High-Spin Cyanide-Bridged Mn9W6 Cluster (S = 39/2) with a Full-Capped Cubane Structure , 2000 .

[111]  A. Hauser,et al.  Cooperative phenomena and light-induced bistability in iron(II) spin-crossover compounds , 1999 .

[112]  S. von Molnár,et al.  Mixed-valence manganites , 1999 .

[113]  A. Fujishima,et al.  Magnetic properties of mixed ferro-ferrimagnets composed of Prussian blue analogs , 1997 .

[114]  A. Fujishima,et al.  Photoinduced Magnetization of a Cobalt-Iron Cyanide , 1996, Science.

[115]  Alexandre Abherv,et al.  Graphene related magnetic materials: micromechanical exfoliation of 2D layered magnets based on bimetallic anilate complexes with inserted , 2015 .

[116]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.