The heat of formation of NCO

The heat of formation of NCO has been determined rigorously by state‐of‐the‐art ab initio electronic structure methods, including Mo/ller–Plesset perturbation theory from second through fifth order (MP2–MP5) and coupled‐cluster and Brueckner methods incorporating various degrees of excitation [CCSD, CCSD(T), BD, BD(T), and BD(TQ)]. Five independent reactions were investigated to establish a consistent value for ΔHf,0○(NCO): (a) HNCO(X 1A’)→H(2S)+NCO(2Π), (b) HNCO(X 1A’)→H++NCO−, (c) N(4S)+CO→NCO(2Π), (d) HCN+O(3P)→H(2S)+NCO(2Π), and (e) NH(3Σ−)+CO→H(2S)+NCO(2Π). The one‐particle basis sets employed in the study were comprised of as many as 377 contracted Gaussian functions and ranged in quality from [4s2p1d] to [14s9p6d4f] on the (C,N,O) atoms and from [2s1p] to [8s6p4d] on hydrogen. After the addition of bond additivity corrections evaluated from related reactions of precisely known thermochemistry, all five approaches were found to converge on the value ΔHf,0○(NCO)=31.4(5) kcal mol−1. Appurtenant refi...

[1]  N. Handy,et al.  Ab initio quadratic, cubic and quartic force constants for the calculation of spectroscopic constants , 1985 .

[2]  Rodney J. Bartlett,et al.  Fifth-Order Many-Body Perturbation Theory and Its Relationship to Various Coupled-Cluster Approaches* , 1986 .

[3]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[4]  M. Head‐Gordon,et al.  Fifth order Moeller-Plesset perturbation theory: comparison of existing correlation methods and implementation of new methods correct to fifth order , 1990 .

[5]  Peter R. Taylor,et al.  General contraction of Gaussian basis sets. I. Atomic natural orbitals for first‐ and second‐row atoms , 1987 .

[6]  S. Langhoff,et al.  Theoretical D0 for NH(X 3Σ , 1987 .

[7]  R. Dixon The absorption spectrum of the free NCO radical , 1960, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[8]  John A. Pople,et al.  Approximate fourth-order perturbation theory of the electron correlation energy , 1978 .

[9]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[10]  Clifford E. Dykstra,et al.  Advanced theories and computational approaches to the electronic structure of molecules , 1984 .

[11]  S. Saito,et al.  Microwave spectrum of the NCO radical , 1970 .

[12]  M. Gruebele,et al.  Velocity modulation diode laser spectroscopy of negative ions: The ν1, ν1+ν2−ν2, ν1+ν3−ν3 bands of thiocyanate (NCS−) , 1987 .

[13]  J. Laane,et al.  Structures and Conformations of Non-Rigid Molecules , 1993 .

[14]  E. Hirota,et al.  Hyperfine Interactions of the Free NCO Radical in the Δ Vibronic State (v2 = 1) , 1972 .

[15]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[16]  P. Jensen,et al.  The potential surface of X̃ 3B1 methylene (CH2) and the singlet–triplet splitting , 1986 .

[17]  J. Plíva,et al.  Anharmonic potential functions of polyatomic molecules , 1967 .

[18]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .

[19]  E. K. Plyler,et al.  VIBRATION–ROTATION BANDS OF AMMONIA: II. THE MOLECULAR DIMENSIONS AND HARMONIC FREQUENCIES OF AMMONIA AND DEUTERATED AMMONIA , 1957 .

[20]  J. English,et al.  Fermi resonance and vibrational relaxation in the A 2Σ state of NCO in solid argon , 1977 .

[21]  Isaiah Shavitt,et al.  Comparison of high-order many-body perturbation theory and configuration interaction for H2O , 1977 .

[22]  W. Hehre,et al.  Heat of formation of hydrogen isocyanide by ion cyclotron double resonance spectroscopy , 1982 .

[23]  Julia E. Rice,et al.  The closed‐shell coupled cluster single and double excitation (CCSD) model for the description of electron correlation. A comparison with configuration interaction (CISD) results , 1987 .

[24]  A. Carrington,et al.  Electron Resonance Spectrum of NCO in the Gas Phase , 1968 .

[25]  John M. Brown,et al.  The laser magnetic resonance spectrum of the NCO radical at 5.2 μm , 1982 .

[26]  C. Melius,et al.  The Thermal Reaction of HNCO at Moderate Temperatures , 1991 .

[27]  Michael J. Frisch,et al.  Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory , 1980 .

[28]  R. K. Nesbet,et al.  Self‐Consistent Orbitals for Radicals , 1954 .

[29]  Michael E. Coltrin,et al.  A theoretical study of the heats of formation of silicon hydride (SiHn), silicon chloride (SiCln), and silicon hydride chloride (SiHnClm) compounds , 1985 .

[30]  D. Crosley,et al.  Spin-orbit splittings and rotational constants for vibrationally excited levels of NCO(X2Πi) , 1984 .

[31]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[32]  A. Hiraya,et al.  Formation of NH(c1Π), NH(A 3Π) and NCO(A 2Σ) in the VUV photolysis of HNCO , 1990 .

[33]  R. Coombe,et al.  Photodissociation of NCO(X 2Π) radicals , 1989 .

[34]  Joosen,et al.  Orientation of NCO- in KBr derived from polarized Raman scattering. , 1989, Physical review. B, Condensed matter.

[35]  C. Moore,et al.  Infrared Spectrum and Vibrational Potential Function of Ketene and the Deuterated Ketenes , 1963 .

[36]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[37]  Peter R. Taylor,et al.  The choice of Gaussian basis sets for molecular electronic structure calculations , 1981 .

[38]  Jing Chen,et al.  Observation of NH (X 3Σ−, a 1Δ) from the H + NCO reaction , 1990 .

[39]  James A. Miller,et al.  Kinetic modeling of the reduction of nitric oxide in combustion products by isocyanic acid , 1991 .

[40]  S. Langhoff,et al.  Core–core and core–valence correlation , 1988 .

[41]  A. Chédin The carbon dioxide molecule: Potential, spectroscopic, and molecular constants from its infrared spectrum , 1979 .

[42]  J. Bearden,et al.  Atomic energy levels , 1965 .

[43]  Michael E. Coltrin,et al.  Theoretical study of the heats of formation of Si2Hn (n = 0-6) compounds and trisilane , 1986 .

[44]  W. Green,et al.  Bond breaking without barriers: Photofragmentation of ketene at the singlet threshold , 1988 .

[45]  D. R. Stull JANAF thermochemical tables , 1966 .

[46]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[47]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[48]  K. Casleton,et al.  Kinetic study of the reactions of cyanyl radical with oxygen and carbon dioxide from 292 to 1500 K using high-temperature photochemistry , 1991 .

[49]  Deborah G. Sauder,et al.  The vibronic state distribution of the NCO(X̃ 2Π) product from the CN+O2 reaction , 1991 .

[50]  B. Thrush,et al.  Laser-induced fluorescence of NCO in the gas phase , 1982 .

[51]  K. Raghavachari,et al.  Electron Correlation Techniques in Quantum Chemistry: Recent Advances , 1991 .

[52]  B. Howard,et al.  Electron resonance studies of the renner effect , 1971 .

[53]  P. Löwdin,et al.  New Horizons of Quantum Chemistry , 1983 .

[54]  Don W. Arnold,et al.  Photoelectron spectroscopy of CN−, NCO−, and NCS− , 1993 .

[55]  B. Sullivan,et al.  Lifetimes in the B2Πi state and the heat of formation of NCO , 1983 .

[56]  Gustavo E. Scuseria,et al.  The open-shell restricted Hartree—Fock singles and doubles coupled-cluster method including triple excitations CCSD (T): application to C+3 , 1991 .

[57]  R. Curl,et al.  An observation of the v 1 rotation-vibration band of the NCO radical by laser magnetic resonance spectroscopy , 1985 .

[58]  N. Handy,et al.  Comparison of the Brueckner and coupled‐cluster approaches to electron correlation , 1992 .

[59]  B. Haynes The oxidation of hydrogen cyanide in fuel-rich flames☆ , 1977 .

[60]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[61]  J. A. Vanderhoff,et al.  Intracavity laser excitation of NCO fluorescence in an atmospheric pressure flame. Final report , 1982 .

[62]  D. Chandler,et al.  Photodissociation studies of isocyanic acid: heat of formation and product branching ratios , 1986 .

[63]  Deborah G. Sauder,et al.  Observation of highly excited bending levels in NCO(X 2Π) , 1990 .

[64]  Christopher S. Johnson,et al.  Characterization of the X̃ 1A’ state of isocyanic acid , 1993 .

[65]  G. Scuseria,et al.  Comparison of coupled-cluster methods which include the effects of connected triple excitations , 1990 .

[66]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[67]  K. Kawaguchi,et al.  Microwave spectroscopy of the NCO radical in the ?2 = 0 ?, ?2 = 1 ?, and ?2 = 2 F vibronic states , 1985 .

[68]  H. Schaefer,et al.  Thermochemistry of CHn, SiHn (n=0–4), and the cations SiH+, SiH2+, and SiH3+: A converged quantum mechanical approach , 1992 .

[69]  John M. Brown,et al.  Dispersed fluorescence studies of the NCO radical , 1987 .

[70]  J. C. Decius,et al.  Matrix infrared spectra and anharmonic force field of NCO , 1973 .

[71]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[72]  Alistair P. Rendell,et al.  The structure and energetics of the HCN → HNC transition state , 1991 .

[73]  G. Frenking,et al.  Theoretical investigation of the structures and electron affinities of cyanato and thiocyanato isomers, 2-azallyl, and methanimine , 1987 .

[74]  K. Lehmann,et al.  Fourier transform spectra of overtone bands of HCN from 5400 to 15100 cm−1 , 1989 .

[75]  Peter J. Knowles,et al.  On the convergence of the Møller-Plesset perturbation series , 1985 .

[76]  K. Kawaguchi,et al.  Microwave spectroscopy of the NCO radical in the v 2 = 1 2Σ state , 1983 .

[77]  W. D. Allen,et al.  Geometrical structures, force constants, and vibrational spectra of SiH, SiH2, SiH3, and SiH4 , 1986 .

[78]  D. Setser,et al.  A lower limit for ΔHf0(NF) and the excitation transfer reactions of N2(A 3Σu+) with NCO(X̃ 2Πi) and NF(X 3Σ−) , 1988 .

[79]  R. A. Perry Kinetics of the reactions of NCO radicals with H2 and NO using laser photolysis–laser induced fluorescence , 1985 .

[80]  H. Okabe Photodissociation of HNCO in the Vacuum Ultraviolet; Production of NCO A 2Σ and NH(A 3π, πc1) , 1970 .

[81]  Julia E. Rice,et al.  Analytic evaluation of energy gradients for the single and double excitation coupled cluster (CCSD) wave function: Theory and application , 1987 .

[82]  Rodney J. Bartlett,et al.  Is fifth-order MBPT enough? , 1985 .

[83]  L. Radom,et al.  6-311G(MC)(d,p): a second-row analogue of the 6-311G(d,p) basis set. Calculated heats of formation for second-row hydrides , 1988 .

[84]  D. Neumark,et al.  Fast beam studies of NCO free radical photodissociation , 1992 .

[85]  D. A. Ramsay,et al.  A Re-Investigation of the $\tilde{A}$ $^{2}\Sigma ^{+}$-$\tilde{X}$ $^{2}\Pi _{\text{i}}$ Band System of NCO , 1975 .

[86]  P. Davies,et al.  Far infrared L.M.R. of [Xtilde] 2Π NCO , 1990 .

[87]  Ian W. M. Smith,et al.  The production of vibrationally excited NCO(X̃ 2Π) in the reaction between CN radicals and O2 , 1991 .

[88]  P. Ho,et al.  Theoretical study of the thermochemistry of fluorosilanes (SiFn and SiHnFm) compounds and hexafluorodisilane , 1990 .

[89]  G. Winnewisser,et al.  ROTATIONAL CONSTANTS FOR HCN AND DCN. , 1971 .

[90]  Donald C. Comeau,et al.  An ab initio determination of the potential‐energy surfaces and rotation–vibration energy levels of methylene in the lowest triplet and singlet states and the singlet–triplet splitting , 1989 .

[91]  L. Radom,et al.  Slow convergence of the møller-plesset perturbation series: the dissociation energy of hydrogen cyanide and the electron affinity of the cyano radical , 1987 .

[92]  D. Siebers,et al.  Rapid reduction of nitrogen oxides in exhaust gas streams , 1986, Nature.

[93]  K. Kuchitsu,et al.  The anharmonic constants and average structure of ammonia , 1968 .

[94]  Dylan Jayatilaka,et al.  Open-shell coupled-cluster theory , 1993 .

[95]  W. D. Allen,et al.  Reaction paths for the dissociation ã 3A‘ CH2CO→X̃ 3B1 CH2 + X̃ 1Σ+ CO , 1988 .

[96]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .