Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: A case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas

Abstract Certainly, lineament mapping occupies an important place in several studies, including geology, hydrogeology and topography etc. With the help of remote sensing techniques, lineaments can be better identified due to strong advances in used data and methods. This allowed exceeding the usual classical procedures and achieving more precise results. The aim of this work is the comparison of ASTER, Landsat-8 and Sentinel 1 data sensors in automatic lineament extraction. In addition to image data, the followed approach includes the use of the pre-existing geological map, the Digital Elevation Model (DEM) as well as the ground truth. Through a fully automatic approach consisting of a combination of edge detection algorithm and line-linking algorithm, we have found the optimal parameters for automatic lineament extraction in the study area. Thereafter, the comparison and the validation of the obtained results showed that the Sentinel 1 data are more efficient in restitution of lineaments. This indicates the performance of the radar data compared to those optical in this kind of study.

[1]  L. Rowan,et al.  Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data , 2003 .

[2]  Katsuaki Koike,et al.  Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt , 2006 .

[3]  M. Hashim,et al.  Geolgical Structure Mapping of the Bentong-Raub Suture Zone, Peninsular Malaysia Using Palsar Remote Sensing Data , 2015 .

[4]  Mazlan Hashim,et al.  Structural geology mapping using PALSAR data in the Bau gold mining district, Sarawak, Malaysia , 2014 .

[5]  Mazlan Hashim,et al.  Automatic lineament extraction in a heavily vegetated region using Landsat Enhanced Thematic Mapper (ETM+) imagery , 2013 .

[6]  Mazlan Hashim,et al.  Identifying areas of high economic-potential copper mineralization using aster data in the urumieh-dokhtar volcanic belt, Iran , 2012 .

[7]  N. Rubinstein,et al.  Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina , 2007 .

[8]  C. Alonso-Contes Lineament mapping for groundwater exploration using remotely sensed imagery in a karst terrain : Rio Tanama and Rio de Arecibo basins in the northern karst of Puerto Rico , 2011 .

[9]  Mazlan Hashim,et al.  ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration , 2014, SpringerPlus.

[10]  C. Ebinger,et al.  Aeromagnetic and Landsat TM structural interpretation for identifying regional groundwater exploration targets, south-central Zimbabwe Craton , 2008 .

[11]  Mazlan Hashim,et al.  Structural mapping using PALSAR data in the Central Gold Belt, Peninsular Malaysia , 2015 .

[12]  M. Hashim,et al.  Application of ASTER and Landsat TM Data for Geological Mapping of Esfandagheh Ophiolite Complex, Southern Iran , 2014 .

[13]  T. Kusky,et al.  Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt , 2012 .

[14]  Nektarios Chrysoulakis,et al.  Comparison of atmospheric correction methods using ASTER data for the area of Crete, Greece , 2010 .

[15]  F. Paganelli,et al.  Use of RADARSAT-1 principal component imagery for structural mapping: a case study in the Buffalo Head Hills area, northern central Alberta, Canada , 2003 .

[16]  Ali Mohammadzadeh,et al.  The application of advanced space-borne thermal emission and reflection (ASTER) radiometer data in the detection of alteration in the Chadormalu paleocrater, Bafq region, Central Iran , 2007 .

[17]  L. Q. Hung,et al.  Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam , 2005, SPIE Remote Sensing.

[18]  Antonio Iodice,et al.  Sentinel-1 for Monitoring Reservoirs: A Performance Analysis , 2014, Remote. Sens..

[19]  S. Gabr,et al.  Detecting areas of high-potential gold mineralization using ASTER data , 2010 .

[20]  L. Coulibaly Interprétation structurale des linéaments par traitement d'image satellitaire : cas des sous-provinces d'Abitibi et d'Opatica (Québec) , 1996 .

[21]  G. Walsh,et al.  Neoproterozoic tectonic evolution of the Jebel Saghro and Bou Azzer—El Graara inliers, eastern and central Anti-Atlas, Morocco , 2012 .

[22]  Abderrazak El Harti,et al.  Lithological mapping using Landsat 8 OLI and Terra ASTER multispectral data in the Bas Drâa inlier, Moroccan Anti Atlas , 2016 .

[23]  B. Mehrabi,et al.  Recognition of the regional lineaments of Iran: Using geospatial data and their implications for exploration of metallic ore deposits , 2013 .

[24]  E. Bedini Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data , 2011 .

[25]  M. Hashim,et al.  Integrating PALSAR and ASTER data for mineral deposits exploration in tropical environments: a case study from Central Belt, Peninsular Malaysia , 2015 .

[26]  Samuel Corgne,et al.  An integrated approach to hydro-geological lineament mapping of a semi-arid region of West Africa using Radarsat-1 and GIS. , 2010 .

[27]  A. Lesne,et al.  Fractal Analysis of Lineaments in Equatorial Africa: Insights on Lithospheric Structure , 2013 .

[28]  M. Hashim,et al.  Structural Mapping of the Bentong‐Raub Suture Zone Using PALSAR Remote Sensing Data, Peninsular Malaysia: Implications for Sediment‐hosted/Orogenic Gold Mineral Systems Exploration , 2016 .

[29]  Na Li Textural and Rule-based Lithological Classification of Remote Sensing Data, and Geological Mapping in Southwestern Prieska Sub-basin, Transvaal Supergroup, South Africa , 2010 .

[30]  William Herbert Hobbs,et al.  Earth Features and Their Meaning; An Introduction to Geology for the Student and the General Reader , 2009 .

[31]  M. Hashim,et al.  Lineament mapping using multispectral remote sensing satellite data , 2010 .

[32]  Thomas Maurer HOW TO PAN-SHARPEN IMAGES USING THE GRAM-SCHMIDT PAN-SHARPEN METHOD – A RECIPE , 2013 .

[33]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[34]  S. Walsh,et al.  Landsat digital enhancements for lineament detection , 1986 .

[35]  S. Solomon,et al.  Lineament characterization and their tectonic significance using Landsat TM data and field studies in the central highlands of Eritrea , 2006 .

[36]  T. Kusky,et al.  ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt , 2007 .

[37]  Mazlan Hashim,et al.  Spectral transformation of ASTER and Landsat TM bands for lithological mapping of Soghan ophiolite complex, south Iran , 2014 .

[38]  Xianfeng Zhang,et al.  Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California) , 2007 .

[39]  Johann Tuduri Processus de formation et relations spatio-temporelles des minéralisations à or et argent en contexte volcanique Précambrien (Jbel Saghro, Anti-Atlas, Maroc). Implications sur les relations déformation-magmatisme-volcanisme-hydrothermalisme , 2005 .

[40]  P. Chavez An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data , 1988 .

[41]  Nureddin M. Saadi,et al.  Integrated remote sensing data utilization for investigating structural and tectonic history of the Ghadames Basin, Libya , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[42]  Mazlan Hashim,et al.  Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran , 2011 .

[43]  Jeffrey S. Kargel,et al.  The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) after fifteen years: Review of global products , 2015, Int. J. Appl. Earth Obs. Geoinformation.