Nanoarchitectonics Intelligence with atomic switch and neuromorphic network system

An emerging concept of “nanoarchitectonics” has been proposed as a way to apply the progress of nanotechnology to materials science. In the introductory parts, we briefly explain the progress in understanding materials through nanotechnology, the overview of nanoarchitectonics, the effects of nanoarchitectonics on the development of functional materials and devices, and outline of nanoarchitectonics intelligence as a main subject of this review paper. In the following sections, we explain the process of constructing intelligent devices based on atomic switches, in which the behavior of atoms determines the device functions, by integrating them with nanoarchitectonics. The contents are categorized into (i) basic operation of atomic switch, (ii) artificial synapse, (iii) neuromorphic network system, (iv) hetero-signal conversion, (v) decision making device, and (vi) atomic switch in practical uses. The atomic switches were originally relatively simple ON/OFF binary-type electrical devices, but their potential as multi-level resistive memory devices for artificial synapses and neuromorphic applications. Furthermore, network-structured atomic switches, which are complex and have regression pathways in their structure and resemble cranial neural circuits. For example, A decision-making device that reproduces human thinking based on a principle different from brain neural circuits was developed using atomic switches and proton-conductive electrochemical cells. Furthermore, atomic switches have been progressively developed into practical usages including application in harsh environments (e.g. high temperature, low temperature, space). Efforts toward information processing and artificial intelligence applications based on nanoarchitectonics tell remarkable success stories of nanoarchitectonics, linking the control of atomic motion to brain-like information control through nanoarchitecture regulations.