Metallic Core-shell particle in a standing wave

In this contribution we focus on the heating and optical forces and acting upon a core-shell particles confined in a standing-wave. The considered spheres are composed either of gold or silver layer on top of a polystyrene core. We present the results of a computational study in which we modify the geometrical parameters of the particles and the wavelength of the trapping beams. This study may suggest optimal particle composition that may be utilized as an optically trapped probe for the surface enhanced Raman spectroscopy (SERS) of biomolecules.

[1]  Naomi J. Halas,et al.  Linear optical properties of gold nanoshells , 1999 .

[2]  Hiroshi Masuhara,et al.  Laser manipulation and fixation of single gold nanoparticles in solution at room temperature , 2002 .

[3]  L. Oddershede,et al.  Expanding the optical trapping range of gold nanoparticles. , 2005, Nano letters.

[4]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[5]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[6]  J. Hotta,et al.  Analysis of radiation pressure exerted on a metallic particle within an evanescent field. , 2000, Optics letters.

[7]  Pavel Zemánek,et al.  Particle jumps between optical traps in a one-dimensional (1D) optical lattice , 2010 .

[8]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[9]  Paul V. Ruijgrok,et al.  Brownian fluctuations and heating of an optically aligned gold nanorod. , 2011, Physical review letters.

[10]  P. Jain,et al.  Review of Some Interesting Surface Plasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems , 2007 .

[11]  Pavel Zemánek,et al.  Parametric study of optical forces acting upon nanoparticles in a single, or a standing, evanescent wave , 2011 .

[12]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[13]  Kishan Dholakia,et al.  Optical manipulation of nanoparticles: a review , 2008 .

[14]  T. Perkins,et al.  Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. , 2006, Optics letters.

[15]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[16]  Frank Scheffold,et al.  Giant enhanced diffusion of gold nanoparticles in optical vortex fields. , 2009, Nano letters.

[17]  Tomáš Čižmár,et al.  Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination , 2008 .

[18]  Pavel Zemánek,et al.  Theoretical comparison of optical traps created by standing wave and single beam , 2003 .

[19]  M. Pinar Mengüç,et al.  Internal absorption cross sections in a stratified sphere. , 1990, Applied optics.

[20]  Thomas Aabo,et al.  Efficient optical trapping and visualization of silver nanoparticles. , 2008, Nano letters.

[21]  W. Yang,et al.  Improved recursive algorithm for light scattering by a multilayered sphere. , 2003, Applied optics.

[22]  J. P. Barton,et al.  Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam , 1989 .

[23]  Elodie Boisselier,et al.  Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. , 2009, Chemical Society reviews.

[24]  Gérard Gréhan,et al.  Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review , 2011 .

[25]  Prashant K. Jain,et al.  Plasmonic photothermal therapy (PPTT) using gold nanoparticles , 2008, Lasers in Medical Science.

[26]  J. West,et al.  Immunotargeted nanoshells for integrated cancer imaging and therapy. , 2005, Nano letters.

[27]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[28]  Romain Quidant,et al.  Surface‐plasmon‐based optical manipulation , 2008 .

[29]  Pavel Zemánek,et al.  Optical trapping of Rayleigh particles using a Gaussian standing wave , 1998 .

[30]  Anita Jannasch,et al.  Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres , 2012, Nature Photonics.

[31]  Pavel Zemánek,et al.  Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[32]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .