Finite Point Sets and Oriented Matroids Combinatorics in Geometry

Many algorithms in computational geometry deal with finite point sets represented by matrices over the reals. The set of oriented matroids can be considered as a set of topological invariants of matrices over the reals together with a natural set of such topological objects making the set complete. One main advantage of these topological invariants is its possible representation as signed vectors allowing computational investigations easily. Various systems of axioms exist for oriented matroids. We try to illustrate basic ideas in the theory of oriented matroids by using various interesting example classes.

[1]  Richard Pollack,et al.  Semispaces of Configurations, Cell Complexes of Arrangements , 1984, J. Comb. Theory, Ser. A.

[2]  W. Kern,et al.  Linear Programming Duality: An Introduction to Oriented Matroids , 1992 .

[3]  Jörg M. Wills,et al.  Handbook of Convex Geometry , 1993 .

[4]  Jürgen Richter-Gebert,et al.  Oriented matroids with few mutations , 1993, Discret. Comput. Geom..

[5]  Peter McMullen,et al.  Polytopes: Abstract, Convex and Computational , 1994 .

[6]  Friedrich Hirzebruch,et al.  Geradenkonfigurationen und algebraische Flächen , 1987 .

[7]  Michel Las Vergnas,et al.  Convexity in oriented matroids , 1980, J. Comb. Theory B.

[8]  Peter Schuchert,et al.  Neighborly 2-Manifolds with 12 Vertices , 1996, J. Comb. Theory, Ser. A.

[9]  Bernd Sturmfels,et al.  Arrangements of lines and pseudolines without adjacent triangles , 1989, J. Comb. Theory, Ser. A.

[10]  B. Sturmfels Computational Synthetic Geometry , 1989 .

[11]  António Guedes de Oliveira,et al.  Algebraic Varieties Characterizing Matroids and Oriented Matroids , 1991 .

[12]  Amos Altshuler,et al.  The classification of simplicial 3-spheres with nine vertices into polytopes and nonpolytopes , 1980, Discret. Math..

[13]  Heiko Harborth,et al.  SOME SIMPLE ARRANGEMENTS OF PSEUDOLINES WITH A MAXIMUM NUMBER OF TRIANGLES , 1985 .

[14]  N. Mnev The universality theorems on the classification problem of configuration varieties and convex polytopes varieties , 1988 .

[15]  Peter Schuchert,et al.  Equifacetted 3-spheres as topes of nonpolytopal matroid polytopes , 1995, Discret. Comput. Geom..

[16]  Walter Kern,et al.  Linear Programming Duality , 1992 .

[17]  Peter Schuchert,et al.  Altshuler's Sphere m9963 Revisited , 1995, SIAM J. Discret. Math..

[18]  Bernd Sturmfels,et al.  An infinite family of minor-minimal nonrealizable 3-chirotopes , 1989 .

[19]  R. W. Shannon Simplicial cells in arrangements of hyperplanes , 1979 .

[20]  Jürgen Bokowski On Recent Progress in Computational Synthetic Geometry , 1994 .

[21]  B. Grünbaum Arrangements and Spreads , 1972 .

[22]  B. Sturmfels Oriented Matroids , 1993 .

[23]  Peter Schuchert,et al.  Matroid-polytope und Einbettungen kombinatorischer Mannigfaltigkeiten , 1995 .

[24]  Jürgen Bokowski,et al.  On the cube problem of Las Vergnas , 1996 .