A Transcriptomic Atlas of Mouse Neocortical Layers

Summary In the mammalian cortex, neurons and glia form a patterned structure across six layers whose complex cytoarchitectonic arrangement is likely to contribute to cognition. We sequenced transcriptomes from layers 1-6b of different areas (primary and secondary) of the adult (postnatal day 56) mouse somatosensory cortex to understand the transcriptional levels and functional repertoires of coding and noncoding loci for cells constituting these layers. A total of 5,835 protein-coding genes and 66 noncoding RNA loci are differentially expressed (“patterned”) across the layers, on the basis of a machine-learning model (naive Bayes) approach. Layers 2-6b are each associated with specific functional and disease annotations that provide insights into their biological roles. This new resource (http://genserv.anat.ox.ac.uk/layers) greatly extends currently available resources, such as the Allen Mouse Brain Atlas and microarray data sets, by providing quantitative expression levels, by being genome-wide, by including novel loci, and by identifying candidate alternatively spliced transcripts that are differentially expressed across layers.

[1]  P. Emson,et al.  Localization of LRRK2 to membranous and vesicular structures in mammalian brain , 2006, Annals of neurology.

[2]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[3]  Steve Horvath,et al.  Molecular Systems Biology 5; Article number 291; doi:10.1038/msb.2009.46 Citation: Molecular Systems Biology 5:291 , 2022 .

[4]  T. Takumi,et al.  Fez1 is layer‐specifically expressed in the adult mouse neocortex , 2004, The European journal of neuroscience.

[5]  V. Tarabykin,et al.  Molecular mechanisms of cortical differentiation , 2006, The European journal of neuroscience.

[6]  Paola Arlotta,et al.  Neuronal Subtype-Specific Genes that Control Corticospinal Motor Neuron Development In Vivo , 2005, Neuron.

[7]  Lydia Ng,et al.  Areal and laminar differentiation in the mouse neocortex using large scale gene expression data. , 2010, Methods.

[8]  Mary Goldman,et al.  The UCSC Genome Browser database: update 2011 , 2010, Nucleic Acids Res..

[9]  Lincoln Stein,et al.  Reactome: a database of reactions, pathways and biological processes , 2010, Nucleic Acids Res..

[10]  Zhuohua Zhang,et al.  Differential distribution of KChIPs mRNAs in adult mouse brain. , 2004, Brain research. Molecular brain research.

[11]  T. Hashikawa,et al.  Binding and complementary expression patterns of semaphorin 3E and plexin D1 in the mature neocortices of mice and monkeys , 2006, The Journal of comparative neurology.

[12]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[13]  Pasko Rakic,et al.  Radial Columns in Cortical Architecture: It Is the Composition That Counts , 2010, Cerebral cortex.

[14]  I. Fujita,et al.  Er81 is expressed in a subpopulation of layer 5 neurons in rodent and primate neocortices , 2006, Neuroscience.

[15]  S. Mayer,et al.  Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage , 2006, Neurology.

[16]  J. Bolz,et al.  Connecting thalamus and cortex: the role of ephrins. , 2006, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[17]  T. Mikkelsen,et al.  Genome-scale DNA methylation maps of pluripotent and differentiated cells , 2008, Nature.

[18]  Coronary artery disease is associated with Alzheimer disease neuropathology in APOE4 carriers. , 2006, Neurology.

[19]  P. Arlotta,et al.  Neuronal subtype specification in the cerebral cortex , 2007, Nature Reviews Neuroscience.

[20]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[21]  Danica Stanimirovic,et al.  Engaging neuroscience to advance translational research in brain barrier biology , 2011, Nature Reviews Neuroscience.

[22]  Allan R. Jones,et al.  Surface-based mapping of gene expression and probabilistic expression maps in the mouse cortex. , 2010, Methods.

[23]  David Haussler,et al.  The UCSC Genome Browser database: update 2010 , 2009, Nucleic Acids Res..

[24]  P. Rakic Evolution of the neocortex: Perspective from developmental biology , 2010 .

[25]  Z. Molnár,et al.  Gene expression analysis of the embryonic subplate. , 2012, Cerebral cortex.

[26]  Susumu Goto,et al.  The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..

[27]  Heiko J Luhmann,et al.  The subplate and early cortical circuits. , 2010, Annual review of neuroscience.

[28]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[29]  K. Amunts,et al.  Centenary of Brodmann's Map — Conception and Fate , 2022 .

[30]  D. Haussler,et al.  Human-mouse alignments with BLASTZ. , 2003, Genome research.

[31]  Daniel Rios,et al.  Ensembl 2011 , 2010, Nucleic Acids Res..

[32]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[33]  Blaz Zupan,et al.  Orange: From Experimental Machine Learning to Interactive Data Mining , 2004, PKDD.

[34]  David Haussler,et al.  Identification and Classification of Conserved RNA Secondary Structures in the Human Genome , 2006, PLoS Comput. Biol..

[35]  Isabelle M. Mansuy,et al.  Dendritic Spine Loss and Synaptic Alterations in Alzheimer’s Disease , 2008, Molecular Neurobiology.

[36]  Z. Molnár,et al.  Towards the classification of subpopulations of layer V pyramidal projection neurons , 2006, Neuroscience Research.

[37]  Peter Stoilov,et al.  Homologues of the Caenorhabditis elegans Fox-1 Protein Are Neuronal Splicing Regulators in Mammals , 2005, Molecular and Cellular Biology.

[38]  L. Dauphinot,et al.  Characterization of a new brain-specific isoform of the EWS oncoprotein. , 2001, European journal of biochemistry.

[39]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[40]  William Stafford Noble,et al.  Non-parametric estimation of posterior error probabilities associated with peptides identified by tandem mass spectrometry , 2008, ECCB.

[41]  J. Olson,et al.  Conservation of Regional Gene Expression in Mouse and Human Brain , 2007, PLoS genetics.

[42]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[43]  R. Krüger,et al.  Balance is the challenge – The impact of mitochondrial dynamics in Parkinson’s disease , 2010, European journal of clinical investigation.

[44]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[45]  E. Terwilliger,et al.  Selective gene expression in brain microglia mediated via adeno-associated virus type 2 and type 5 vectors , 2003, Gene Therapy.

[46]  P. Greengard,et al.  DARPP-32, a dopamine- and adenosine 3':5'-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  C. Ponting,et al.  Evolution and Functions of Long Noncoding RNAs , 2009, Cell.

[48]  P. Hof,et al.  The impact of vascular burden on late-life depression , 2009, Brain Research Reviews.

[49]  X. F. Wang,et al.  NMDA receptors in layers II and III of rat cerebral cortex , 1994, Brain Research.

[50]  Jelliffe Vergleichende Lokalisationslehre der Grosshirnrinde , 1910 .

[51]  T. Derrien,et al.  Long Noncoding RNAs with Enhancer-like Function in Human Cells , 2010, Cell.

[52]  C. Ponting,et al.  Transcribed dark matter: meaning or myth? , 2010, Human molecular genetics.

[53]  M. Hasan,et al.  Differences in the regulation of microtubule stability by the pro‐rich region variants of microtubule‐associated protein 4 , 2006, FEBS letters.

[54]  Weixiong Zhang,et al.  Variations in the transcriptome of Alzheimer's disease reveal molecular networks involved in cardiovascular diseases , 2008, Genome Biology.

[55]  Henry Markram,et al.  Interneuron Diversity series: Molecular and genetic tools to study GABAergic interneuron diversity and function , 2004, Trends in Neurosciences.

[56]  C. W. Ragsdale,et al.  Molecular analysis of neocortical layer structure in the ferret , 2010, The Journal of comparative neurology.

[57]  A. Thomson,et al.  Interlaminar connections in the neocortex. , 2003, Cerebral cortex.

[58]  N. Yamamoto,et al.  Cooperative activity of multiple upper layer proteins for thalamocortical axon growth , 2008, Developmental neurobiology.

[59]  T. Mikkelsen,et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells , 2007, Nature.

[60]  Laurent Gil,et al.  Ensembl variation resources , 2010, BMC Genomics.

[61]  A. Peters,et al.  Neuronal organization in area 17 of cat visual cortex. , 1993, Cerebral cortex.

[62]  Y. Xing,et al.  A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function , 2008, The Journal of Neuroscience.

[63]  N. Heintz Gene Expression Nervous System Atlas (GENSAT) , 2004, Nature Neuroscience.

[64]  Robert F. Hevner,et al.  Transcription factors in glutamatergic neurogenesis: Conserved programs in neocortex, cerebellum, and adult hippocampus , 2006, Neuroscience Research.

[65]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[66]  Yong Zhang,et al.  CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine , 2007, Nucleic Acids Res..

[67]  E. G. Jones,et al.  Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. , 2000, Annual review of neuroscience.

[68]  N. Wood,et al.  Expanding insights of mitochondrial dysfunction in Parkinson's disease , 2006, Nature Reviews Neuroscience.

[69]  G. Kreiman,et al.  Widespread transcription at neuronal activity-regulated enhancers , 2010, Nature.

[70]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[71]  Jon H. Kaas,et al.  The evolution of the complex sensory and motor systems of the human brain , 2008, Brain Research Bulletin.

[72]  C Rosendorff,et al.  Coronary artery disease is associated with Alzheimer disease neuropathology in APOE4 carriers , 2006, Neurology.

[73]  Steve D. M. Brown,et al.  A Mutation in Af4 Is Predicted to Cause Cerebellar Ataxia and Cataracts in the Robotic Mouse , 2003, The Journal of Neuroscience.

[74]  C. Ponting,et al.  Genomic and Transcriptional Co-Localization of Protein-Coding and Long Non-Coding RNA Pairs in the Developing Brain , 2009, PLoS genetics.

[75]  Damian Smedley,et al.  BioMart – biological queries made easy , 2009, BMC Genomics.

[76]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[77]  C. Walsh,et al.  Expression of Cux‐1 and Cux‐2 in the subventricular zone and upper layers II–IV of the cerebral cortex , 2004, The Journal of comparative neurology.

[78]  Galt P. Barber,et al.  BigWig and BigBed: enabling browsing of large distributed datasets , 2010, Bioinform..

[79]  C. Ponting,et al.  Catalogues of mammalian long noncoding RNAs: modest conservation and incompleteness , 2009, Genome Biology.

[80]  T. Maeda,et al.  Detailed noradrenaline pathways of locus coeruleus neuron to the cerebral cortex with use of 6-hydroxydopa. , 1974, Brain research.

[81]  S. Horvath,et al.  Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways , 2010, Proceedings of the National Academy of Sciences.

[82]  S. Luo,et al.  High-Resolution Analysis of Parent-of-Origin Allelic Expression in the Mouse Brain , 2010, Science.

[83]  M. Kalloniatis,et al.  Oligodendrocyte positioning in cerebral cortex is independent of projection neuron layering , 2009, Glia.

[84]  Judith A. Blake,et al.  The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics , 2010, Nucleic Acids Res..

[85]  Crispin J. Miller,et al.  A comparison of massively parallel nucleotide sequencing with oligonucleotide microarrays for global transcription profiling , 2010, BMC Genomics.

[86]  T. Noguchi,et al.  An isoform of microtubule-associated protein 4 inhibits kinesin-driven microtubule gliding. , 2007, Journal of biochemistry.

[87]  S. Nelson,et al.  The problem of neuronal cell types: a physiological genomics approach , 2006, Trends in Neurosciences.

[88]  William Stafford Noble,et al.  Matrix2png: a utility for visualizing matrix data , 2003, Bioinform..

[89]  O. Paulsen,et al.  Novel markers reveal subpopulations of subplate neurons in the murine cerebral cortex. , 2009, Cerebral cortex.

[90]  J. Rubenstein,et al.  T-Brain-1: A homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex , 1995, Neuron.

[91]  Cole Trapnell,et al.  Improving RNA-Seq expression estimates by correcting for fragment bias , 2011, Genome Biology.

[92]  F. Conti,et al.  Neuronal and glial localization of NMDA receptors in the cerebral cortex , 1997, Molecular Neurobiology.

[93]  V. Perry,et al.  Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain , 1985, Neuroscience.

[94]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[95]  J F Fulton,et al.  Physiology of the Nervous System , 1939, Science.