A robust conforming NURBS tessellation for industrial applications based on a mesh generation approach

A NURBS tessellation technique is presented with the goal to robustly approximate CAD surfaces that define the boundary of complicated three dimensional geometric shapes with a minimum number of triangles. The minimization is achieved by generating anisotropic triangles in the three dimensional space. New procedures are presented to handle numerical stability issues due to the anisotropy. The tessellation is generated using a mesh generation viewpoint, as opposed to the more classical viewpoint of graphical visualization of surfaces in CAD. This ensures topological conformity of the resulting mesh. A tiered approximation approach is used for speed and robustness. Degeneracies associated with NURBS curves and surfaces are given special attention as they occur frequently in naval and aerospace conceptual-to-early design process. Analogies with a classical mesh generation process are discussed and several numerical examples illustrate the method. A tessellation technique based on a mesh generation is described.A minimum number of elements is generated to encode the shape of a model as compressed as possible.Conformity is guaranteed by construction.NURBS singularities are commented and handled properly.Drawbacks of parametric methods are highlighted.

[1]  Charles L. Lawson,et al.  Transforming triangulations , 1972, Discret. Math..

[2]  Les A. Piegl,et al.  Tessellating trimmed surfaces , 1995, Comput. Aided Des..

[3]  Robert P. Markot,et al.  Surface algorithms using bounds on derivatives , 1986, Comput. Aided Geom. Des..

[4]  Anselmo Lastra,et al.  Interactive Display of Large NURBS Models , 1996, IEEE Trans. Vis. Comput. Graph..

[5]  William L. Luken,et al.  Tessellation of trimmed NURB surfaces , 1996, Comput. Aided Geom. Des..

[6]  H. Borouchaki,et al.  Fast Delaunay triangulation in three dimensions , 1995 .

[7]  Gershon Elber Error bounded piecewise linear approximation of freeform surfaces , 1996, Comput. Aided Des..

[8]  Saikat Dey,et al.  Singularities in Parametric Meshing , 2012, IMR.

[9]  Marc Vigo,et al.  Computing directional constrained Delaunay triangulations , 2000 .

[10]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[11]  Reinhard Klein,et al.  Efficient Trimmed NURBS Tessellation , 2004, WSCG.

[12]  Paul-Louis George,et al.  Génération automatique de maillages : applications aux méthodes d'éléments finis , 1991 .

[13]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[14]  Houman Borouchaki,et al.  High Quality Geometric Meshing of CAD Surfaces , 2011, IMR.

[15]  Kazuhiro Nakahashi,et al.  Direct Surface Triangulation Using Stereolithography Data , 2002 .

[16]  Robin Sibson,et al.  Locally Equiangular Triangulations , 1978, Comput. J..

[17]  Rainald Löhner,et al.  Linear Sources for Mesh Generation , 2013, SIAM J. Sci. Comput..

[18]  R. B. Simpson,et al.  On optimal interpolation triangle incidences , 1989 .

[19]  Xiangmin Jiao,et al.  Surface Mesh Optimization, Adaption, and Untangling with High-Order Accuracy , 2012, IMR.

[20]  Bernd E. Hirsch,et al.  Triangulation of trimmed surfaces in parametric space , 1992, Comput. Aided Des..

[21]  David L. Marcum,et al.  Unstuctured Surface Grid Generation Using Global Mapping and Physical Space Approximation , 1999, IMR.

[22]  Ian R. Porteous,et al.  Geometric differentiation for the intelligence of curves and surfaces , 1994 .

[23]  Alyn P. Rockwood,et al.  Real-time rendering of trimmed surfaces , 1989, SIGGRAPH.

[24]  Tony DeRose,et al.  Geometric continuity of parametric curves: three equivalent characterizations , 1989, IEEE Computer Graphics and Applications.

[25]  Wayne Tiller,et al.  Geometry-based triangulation of trimmed NURBS surfaces , 1998, Comput. Aided Des..

[26]  E. F. D'Azevedo,et al.  On optimal triangular meshes for minimizing the gradient error , 1991 .

[27]  Christophe Geuzaine,et al.  Robust untangling of curvilinear meshes , 2013, J. Comput. Phys..

[28]  Thierry Coupez,et al.  Lagrangian finite‐element analysis of time‐dependent viscous free‐surface flow using an automatic remeshing technique: Application to metal casting flow , 1993 .

[29]  Guillaume Houzeaux,et al.  A surface remeshing approach , 2010 .

[30]  E. Oñate,et al.  Assessment of a Lagrangian Incompressible Flow Code , 2007 .

[31]  Marc Vigo Anglada,et al.  Computing directional constrained Delaunay triangulations , 1999, Comput. Graph..

[32]  I. Faux,et al.  Computational Geometry for Design and Manufacture , 1979 .

[33]  Lyuba Alboul Optimising Triangulated Polyhedral Surfaces with Self-intersections , 2003, IMA Conference on the Mathematics of Surfaces.

[34]  Adrien Loseille,et al.  On 3D Anisotropic Local Remeshing for Surface, Volume and Boundary Layers , 2009, IMR.

[35]  Saikat Dey,et al.  A three-dimensional parametric mesher with surface boundary-layer capability , 2014, J. Comput. Phys..

[36]  Jean-Christophe Cuillière,et al.  Generation of a finite element MESH from stereolithography (STL) files , 2002, Comput. Aided Des..

[37]  Dinesh Manocha,et al.  Efficient rendering of trimmed NURBS surfaces , 1995, Comput. Aided Des..

[38]  Xevi Roca,et al.  Defining Quality Measures for Mesh Optimization on Parameterized CAD Surfaces , 2012, IMR.

[39]  J. Lane,et al.  A generalized scan line algorithm for the computer display of parametrically defined surfaces , 1979 .

[40]  Saikat Dey,et al.  A three dimensional parametric mesher , 2013 .

[41]  Tiow Seng Tan,et al.  An O(n2 log n) Time Algorithm for the Minmax Angle Triangulation , 1992, SIAM J. Sci. Comput..

[42]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[43]  Pierre Boulanger,et al.  Triangulating Trimmed NURBS Surfaces , 2000 .

[44]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[45]  R. Löhner Regridding Surface Triangulations , 1996 .

[46]  Mark S. Shephard,et al.  a General Topology-Based Mesh Data Structure , 1997 .

[47]  Pascal J. Frey,et al.  About Surface Remeshing , 2000, IMR.

[48]  Yasushi Yamaguchi,et al.  Differential Properties at Singular Points of Parametric Surfaces , 1998, CAD Tools and Algorithms for Product Design.

[49]  Patrick Laug,et al.  Some aspects of parametric surface meshing , 2010 .

[50]  Rainald Löhner,et al.  An advancing front point generation technique , 1998 .

[51]  Lyuba Alboul,et al.  On Flips in Polyhedral Surfaces: a new development , 2002 .

[52]  W. Kühnel Differential Geometry: Curves - Surfaces - Manifolds , 2002 .