Full XKu band microwave absorption by Fe(Mn)/Mn 7C 3/C core/shell/shell structured nanocapsules

New type of Fe(Mn)/Mn(7)C(3)/graphite nanocapsules was prepared by a modified arc discharge technique in ethanol vapor, with Fe(Mn) solid solution nanoparticles as the core, Mn(7)C(3) as the inner shell, and graphite as the outer shell. The Cole-Cole semicircle approach was adopted to explain the ternary dielectric resonance, due to a cooperative consequence of the core/shell/shell interfaces and the dielectric Mn(7)C(3) and C shells. A remarkable increase in the anisotropy energy led to a shift in the natural resonance frequency to 6.6 GHz. Dielectric losses come from the ternary dielectric resonance while magnetic losses were from the magnetic natural resonance. An optimal reflection loss (RL) of -142.1 dB was observed at 12 GHz for 5.0 mm thickness layer. RL exceeding -10 dB was obtained at 6.6-18 GHz for 1.4 mm thickness, covering the whole X band (8-12 GHz), Ku band (12-18 GHz), and some of C band (6.6-8.0 GHz). RL exceeding -20 dB was found at 6-10.6 GHz for 2.2 mm thickness. (C) 2011 Elsevier B. V. All rights reserved.

[1]  H. Meng,et al.  Microwave-absorption properties of ZnO-coated iron nanocapsules , 2008 .

[2]  Masahiro Itoh,et al.  Electromagnetic wave absorption properties of α-Fe/Fe3B/Y2O3 nanocomposites in gigahertz range , 2003 .

[3]  B. Li,et al.  Magnetic properties of Dy nanoparticles and Al2O3-coated Dy nanocapsules , 2011 .

[4]  X. G. Liu,et al.  Broadband electromagnetic-wave absorption by FeCo/C nanocapsules , 2009 .

[5]  X. G. Liu,et al.  Microwave-absorption properties of FeCo microspheres self-assembled by Al2O3-coated FeCo nanocapsules , 2008 .

[6]  Jie Yuan,et al.  Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability , 2009 .

[7]  Fashen Li,et al.  Microwave absorption properties of the hierarchically branched Ni nanowire composites , 2009 .

[8]  Tao Wang,et al.  Microwave permeability of flake-shaped FeCuNbSiB particle composite with rotational orientation , 2010 .

[9]  Qing Chen,et al.  Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes , 2004 .

[10]  Fan Zhang,et al.  Fe3O4/TiO2 Core/Shell Nanotubes: Synthesis and Magnetic and Electromagnetic Wave Absorption Characteristics , 2010 .

[11]  Masahiro Itoh,et al.  Magnetic and electromagnetic wave absorption properties of α-Fe∕Z-type Ba-ferrite nanocomposites , 2006 .

[12]  S. Linderoth,et al.  Surface effects in metallic iron nanoparticles. , 1994, Physical review letters.

[13]  Sahrim Ahmad,et al.  Electromagnetic and absorption properties of some microwave absorbers , 2002 .

[14]  Huolin Huang,et al.  Microstructure and microwave absorption properties of carbon-coated iron nanocapsules , 2007 .

[15]  X. G. Zhu,et al.  Microwave absorption properties of the core/shell-type iron and nickel nanoparticles , 2008 .

[16]  Qingfang Liu,et al.  Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nanoshell , 2010, Nanotechnology.

[17]  Masao Terada,et al.  Electromagnetic wave absorption properties of Fe3C/carbon nanocomposites prepared by a CVD method , 2009 .

[18]  X. G. Liu,et al.  Enhanced natural resonance and attenuation properties in superparamagnetic graphite-coated FeNi3 nanocapsules , 2009 .

[19]  Chunyi Zhi,et al.  Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite , 2006 .

[20]  Hiroyasu Ota,et al.  GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen , 2002 .

[21]  Siu Wing Or,et al.  Electromagnetic wave absorption properties of mechanically mixed Nd2Fe14B/C microparticles , 2011 .

[22]  X. G. Liu,et al.  Electromagnetic-wave-absorption properties of wire-like structures self-assembled by FeCo nanocapsules , 2008 .

[23]  YL Cheng,et al.  Enhanced Microwave Absorption Properties of Intrinsically Core/shell Structured La0.6Sr0.4MnO3Nanoparticles , 2009, Nanoscale research letters.

[24]  Wei Liu,et al.  Dual nonlinear dielectric resonance and strong natural resonance in Ni/ZnO nanocapsules , 2009 .

[25]  Fan Zhang,et al.  Synthesis, Multi-Nonlinear Dielectric Resonance, and Excellent Electromagnetic Absorption Characteristics of Fe3O4/ZnO Core/Shell Nanorods , 2010 .

[26]  X G Liu,et al.  High dielectric loss in graphite-coated Ti nanocapsules. , 2010, Journal of nanoscience and nanotechnology.

[27]  Xianguo Liu,et al.  Microwave-absorption properties of Fe(Mn)/ferrite nanocapsules , 2009 .

[28]  X. G. Liu,et al.  Microwave absorption properties of FCC-Co/Al2O3 and FCC-Co/Y2O3 nanocapsules , 2009 .

[29]  Xiao Lin,et al.  Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. , 2006, Nano letters.

[30]  Wei Liu,et al.  Effect of metal grain size on multiple microwave resonances of Fe/TiO2 metal-semiconductor composite , 2010 .

[31]  C. Kittel On the Theory of Ferromagnetic Resonance Absorption , 1948 .

[32]  Yubai Pan,et al.  Ordered Mesoporous Carbon/Fused Silica Composites , 2008 .

[33]  Wei Liu,et al.  Exchange bias in CrN/Co nanocomposites consisting of CrN-coated Co nanocapsules and CrN nanoparticles , 2009 .

[34]  X. G. Liu,et al.  Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles (vol 48, pg 891, 2010) , 2010 .

[35]  Yang Liu,et al.  Microwave absorption properties of the carbon-coated nickel nanocapsules , 2006 .

[36]  Masao Terada,et al.  Enhanced electromagnetic wave absorption properties of Fe nanowires in gigaherz range , 2007 .