1 An overview to modeling, characterizing, and predicting the effects of internal gravity 2 waves on acoustic propagation at basin to global scales 3
暂无分享,去创建一个
Kathryn L. Verlinden | J. Summers | R. Helber | E. Chassignet | A. Wallcraft | B. Arbic | M. Buijsman | J. Shriver | Xiaobiao Xu | E. Coelho | M. Schönau | J. Ragland | J. Skitka | K. Raja | L. Hiron | Miguel S Solano | Miguel S. Solano | Luna Hiron
[1] B. Arbic,et al. Validating the spatial variability in the semidiurnal internal tide in a realistic global ocean simulation with Argo and mooring data , 2023, Ocean Science.
[2] D. Menemenlis,et al. Probing the Nonlinear Interactions of Supertidal Internal Waves using a High-Resolution Regional Ocean Model , 2023, 2302.01176.
[3] E. Chassignet,et al. On the Spatial Variability of the Mesoscale Sea Surface Height Wavenumber Spectra in the Atlantic Ocean , 2022, Journal of Geophysical Research: Oceans.
[4] D. Menemenlis,et al. Near‐surface oceanic kinetic energy distributions from drifter observations and numerical models , 2022, Journal of Geophysical Research: Oceans.
[5] D. Menemenlis,et al. Impact of Vertical Mixing Parameterizations on Internal Gravity Wave Spectra in Regional Ocean Models , 2022, Geophysical Research Letters.
[6] B. Arbic. Incorporating Tides and Internal Gravity Waves within Global Ocean General Circulation Models: A review , 2022, Progress in Oceanography.
[7] B. Arbic,et al. Near-inertial wave energetics modulated by background flows in a global model simulation , 2022, Journal of Physical Oceanography.
[8] S. Kelly,et al. Global Dynamics of the Stationary M2 Mode‐1 Internal Tide , 2021, Geophysical research letters.
[9] K. Polzin,et al. On the Origins of the Oceanic Ultraviolet Catastrophe , 2021, Journal of Physical Oceanography.
[10] D. Menemenlis,et al. Numerical Investigation of Mechanisms Underlying Oceanic Internal Gravity Wave Power-Law Spectra , 2020 .
[11] A. Wallcraft,et al. On the interplay between horizontal resolution and wave drag and their effect on tidal baroclinic mode waves in realistic global ocean simulations , 2020, Ocean Modelling.
[12] D. Menemenlis,et al. Statistical Comparisons of Temperature Variance and Kinetic Energy in Global Ocean Models and Observations: Results From Mesoscale to Internal Wave Frequencies , 2020, Journal of Geophysical Research: Oceans.
[13] D. Menemenlis,et al. Improved Internal Wave Spectral Continuum in a Regional Ocean Model , 2020 .
[14] D. Olbers,et al. Towards a Global Spectral Energy Budget for Internal Gravity Waves in the Ocean , 2020, Journal of Physical Oceanography.
[15] E. Joseph Metzger,et al. A Primer on Global Internal Tide and Internal Gravity Wave Continuum Modeling in HYCOM and MITgcm , 2018, New Frontiers in Operational Oceanography.
[16] H. Simmons,et al. Geographical Distribution of Diurnal and Semidiurnal Parametric Subharmonic Instability in a Global Ocean Circulation Model , 2018, Journal of Physical Oceanography.
[17] Vincent Dumoulin,et al. Generative Adversarial Networks: An Overview , 2017, 1710.07035.
[18] E. Chassignet,et al. Impact of Horizontal Resolution (1/12° to 1/50°) on Gulf Stream Separation, Penetration, and Variability , 2017 .
[19] Stephen M. Griffies,et al. Vertical resolution of baroclinic modes in global ocean models , 2017 .
[20] Alexei A. Efros,et al. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).
[21] Robert Pinkel,et al. The formation and fate of internal waves in the South China Sea , 2015, Nature.
[22] Dake Chen,et al. Global Wavenumber Spectrum with Corrections for Altimeter High-Frequency Noise , 2015 .
[23] P. Posey,et al. US Navy Operational Global Ocean and Arctic Ice Prediction Systems , 2014 .
[24] Maria Flatau,et al. The Navy Global Environmental Model , 2014 .
[25] Aaron C. Courville,et al. Generative Adversarial Networks , 2014, 1406.2661.
[26] Yongsheng Xu,et al. The Effects of Altimeter Instrument Noise on the Estimation of the Wavenumber Spectrum of Sea Surface Height , 2012 .
[27] Alan J. Wallcraft,et al. Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model , 2012 .
[28] K. Polzin,et al. TOWARD REGIONAL CHARACTERIZATIONS OF THE OCEANIC INTERNAL WAVEFIELD , 2010, 1007.2113.
[29] R. Helber,et al. Evaluating the sonic layer depth relative to the mixed layer depth , 2008 .
[30] R. Hallberg,et al. Internal wave generation in a global baroclinic tide model , 2004 .
[31] R. Hallberg,et al. The accuracy of surface elevations in forward global barotropic and baroclinic tide models , 2004 .
[32] K. Lamb. Nonlinear interaction among internal wave beams generated by tidal flow over supercritical topography , 2004 .
[33] Eric P. Chassignet,et al. North Atlantic Simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the Vertical Coordinate Choice, Reference Pressure, and Thermobaricity , 2003 .
[34] L. Perelman,et al. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .
[35] A. Bennett,et al. TOPEX/POSEIDON tides estimated using a global inverse model , 1994 .
[36] A. E. Gill. Atmosphere-Ocean Dynamics , 1982 .
[37] F. Bretherton,et al. Resonant interaction of oceanic internal waves , 1977 .
[38] Owen S. Lee,et al. INTERNAL WAVES IN THE OCEAN , 1962 .
[39] The Group Meetings , 1920 .
[40] R. Helber,et al. Spurious internal wave generation during data assimilation in eddy resolving ocean model simulations , 2023 .
[41] Guigang Zhang,et al. Deep Learning , 2016, Int. J. Semantic Comput..
[42] Svein Erling Hansen. OPERATIONAL OCEANOGRAPHY , 2014 .
[43] Ole Martin Smedstad,et al. Variational Data Assimilation for the Global Ocean , 2013 .
[44] Chris Garrett,et al. Internal Tide Generation in the Deep Ocean , 2007 .
[45] R. Bleck,et al. Global Ocean Prediction with the Hybrid Coordinate Ocean Model , 2009 .
[46] Rainer Bleck,et al. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates , 2002 .
[47] From the Chief Scientist. , 2001, Health bulletin.