1 An overview to modeling, characterizing, and predicting the effects of internal gravity 2 waves on acoustic propagation at basin to global scales 3

: 16 Underwater acoustic propagation depends on ocean temperature, salinity, pressure, and 17 topography. The realistic repres ent ation of the ocean state and its underlying dynamics within 18 ocean models is essential to achieve accurate underwater acoustic propagation modeling and 19 prediction. Stratified, high-resolution global ocean models that include tidal forcing have only 20 been developed in the last two decades. Tidal forcing introduces internal tides and generates 21 higher frequency (supertidal) internal waves. The solutions in such simulations include both 22 higher and lower internal-wave vertical modes, where higher modes have more vertical structure. 23 This project used global, basin-scale, and idealized HYbrid Coordinate Ocean Model (HYCOM) 24 simulations as well as regional Massachusetts Institute of Technology general circulation model 25 (MITgcm) simulations to examine the impacts of tidal inclusion on sea surface height variability, 26 the propagation and dissipation of internal-wave energy, and the sensitivity of internal wave 27 modeling to vertical and horizontal grid spacing. Sound speed, acoustic parameters, and acoustic 28 propagation were compared between tidally-forced simulations and simulations without tidal 29 forcing. Tidal forcing causes variability in acoustic properties at

[1]  B. Arbic,et al.  Validating the spatial variability in the semidiurnal internal tide in a realistic global ocean simulation with Argo and mooring data , 2023, Ocean Science.

[2]  D. Menemenlis,et al.  Probing the Nonlinear Interactions of Supertidal Internal Waves using a High-Resolution Regional Ocean Model , 2023, 2302.01176.

[3]  E. Chassignet,et al.  On the Spatial Variability of the Mesoscale Sea Surface Height Wavenumber Spectra in the Atlantic Ocean , 2022, Journal of Geophysical Research: Oceans.

[4]  D. Menemenlis,et al.  Near‐surface oceanic kinetic energy distributions from drifter observations and numerical models , 2022, Journal of Geophysical Research: Oceans.

[5]  D. Menemenlis,et al.  Impact of Vertical Mixing Parameterizations on Internal Gravity Wave Spectra in Regional Ocean Models , 2022, Geophysical Research Letters.

[6]  B. Arbic Incorporating Tides and Internal Gravity Waves within Global Ocean General Circulation Models: A review , 2022, Progress in Oceanography.

[7]  B. Arbic,et al.  Near-inertial wave energetics modulated by background flows in a global model simulation , 2022, Journal of Physical Oceanography.

[8]  S. Kelly,et al.  Global Dynamics of the Stationary M2 Mode‐1 Internal Tide , 2021, Geophysical research letters.

[9]  K. Polzin,et al.  On the Origins of the Oceanic Ultraviolet Catastrophe , 2021, Journal of Physical Oceanography.

[10]  D. Menemenlis,et al.  Numerical Investigation of Mechanisms Underlying Oceanic Internal Gravity Wave Power-Law Spectra , 2020 .

[11]  A. Wallcraft,et al.  On the interplay between horizontal resolution and wave drag and their effect on tidal baroclinic mode waves in realistic global ocean simulations , 2020, Ocean Modelling.

[12]  D. Menemenlis,et al.  Statistical Comparisons of Temperature Variance and Kinetic Energy in Global Ocean Models and Observations: Results From Mesoscale to Internal Wave Frequencies , 2020, Journal of Geophysical Research: Oceans.

[13]  D. Menemenlis,et al.  Improved Internal Wave Spectral Continuum in a Regional Ocean Model , 2020 .

[14]  D. Olbers,et al.  Towards a Global Spectral Energy Budget for Internal Gravity Waves in the Ocean , 2020, Journal of Physical Oceanography.

[15]  E. Joseph Metzger,et al.  A Primer on Global Internal Tide and Internal Gravity Wave Continuum Modeling in HYCOM and MITgcm , 2018, New Frontiers in Operational Oceanography.

[16]  H. Simmons,et al.  Geographical Distribution of Diurnal and Semidiurnal Parametric Subharmonic Instability in a Global Ocean Circulation Model , 2018, Journal of Physical Oceanography.

[17]  Vincent Dumoulin,et al.  Generative Adversarial Networks: An Overview , 2017, 1710.07035.

[18]  E. Chassignet,et al.  Impact of Horizontal Resolution (1/12° to 1/50°) on Gulf Stream Separation, Penetration, and Variability , 2017 .

[19]  Stephen M. Griffies,et al.  Vertical resolution of baroclinic modes in global ocean models , 2017 .

[20]  Alexei A. Efros,et al.  Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[21]  Robert Pinkel,et al.  The formation and fate of internal waves in the South China Sea , 2015, Nature.

[22]  Dake Chen,et al.  Global Wavenumber Spectrum with Corrections for Altimeter High-Frequency Noise , 2015 .

[23]  P. Posey,et al.  US Navy Operational Global Ocean and Arctic Ice Prediction Systems , 2014 .

[24]  Maria Flatau,et al.  The Navy Global Environmental Model , 2014 .

[25]  Aaron C. Courville,et al.  Generative Adversarial Networks , 2014, 1406.2661.

[26]  Yongsheng Xu,et al.  The Effects of Altimeter Instrument Noise on the Estimation of the Wavenumber Spectrum of Sea Surface Height , 2012 .

[27]  Alan J. Wallcraft,et al.  Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model , 2012 .

[28]  K. Polzin,et al.  TOWARD REGIONAL CHARACTERIZATIONS OF THE OCEANIC INTERNAL WAVEFIELD , 2010, 1007.2113.

[29]  R. Helber,et al.  Evaluating the sonic layer depth relative to the mixed layer depth , 2008 .

[30]  R. Hallberg,et al.  Internal wave generation in a global baroclinic tide model , 2004 .

[31]  R. Hallberg,et al.  The accuracy of surface elevations in forward global barotropic and baroclinic tide models , 2004 .

[32]  K. Lamb Nonlinear interaction among internal wave beams generated by tidal flow over supercritical topography , 2004 .

[33]  Eric P. Chassignet,et al.  North Atlantic Simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the Vertical Coordinate Choice, Reference Pressure, and Thermobaricity , 2003 .

[34]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[35]  A. Bennett,et al.  TOPEX/POSEIDON tides estimated using a global inverse model , 1994 .

[36]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[37]  F. Bretherton,et al.  Resonant interaction of oceanic internal waves , 1977 .

[38]  Owen S. Lee,et al.  INTERNAL WAVES IN THE OCEAN , 1962 .

[39]  The Group Meetings , 1920 .

[40]  R. Helber,et al.  Spurious internal wave generation during data assimilation in eddy resolving ocean model simulations , 2023 .

[41]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[42]  Svein Erling Hansen OPERATIONAL OCEANOGRAPHY , 2014 .

[43]  Ole Martin Smedstad,et al.  Variational Data Assimilation for the Global Ocean , 2013 .

[44]  Chris Garrett,et al.  Internal Tide Generation in the Deep Ocean , 2007 .

[45]  R. Bleck,et al.  Global Ocean Prediction with the Hybrid Coordinate Ocean Model , 2009 .

[46]  Rainer Bleck,et al.  An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates , 2002 .

[47]  From the Chief Scientist. , 2001, Health bulletin.