Standoff reflection–absorption spectra of surface adsorbed explosives measured with pulsed quantum cascade lasers

Abstract We demonstrate a standoff detection scheme of surface adsorbed explosives based on the broadband quantum cascade laser (QCL) infrared reflection–absorption spectroscopy and ultraviolet laser photodecomposition. We utilized a sub-second rapid-scan data acquisition scheme to record continuously scanned spectra which revealed the broad-band absorption features of surface adsorbed explosive molecules such as cyclotrimethylene trinitramine (RDX) and trinitrotoluene with a surface concentration of 1 μg/cm 2 . The standoff QCL spectra perfectly reproduce the reflectance spectra obtained with a conventional Fourier transform infrared spectroscopy instrument. The conformation conversion of RDX molecules is also observed and studied.

[1]  Konstantin L. Vodopyanov,et al.  Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator , 2002 .

[2]  B. Rice,et al.  Ab Initio and Nonlocal Density Functional Study of 1,3,5-Trinitro-s-triazine (RDX) Conformers , 1997 .

[3]  Rolf Aidam,et al.  Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers , 2010 .

[4]  C. W. van Neste,et al.  Standoff spectroscopy of surface adsorbed chemicals. , 2009, Analytical chemistry.

[5]  L. Pacheco-Londoño,et al.  Vibrational spectroscopy standoff detection of explosives , 2009, Analytical and bioanalytical chemistry.

[6]  G. Kortuem,et al.  Reflectance Spectroscopy: Principles, Methods, Applications , 1969 .

[7]  C. W. Van Neste,et al.  Standoff detection of explosive residues on unknown surfaces , 2012, Defense, Security, and Sensing.

[8]  R. A. McGill,et al.  Stand-off detection of trace explosives via resonant infrared photothermal imaging , 2008 .

[9]  C. W. van Neste,et al.  Standoff photoacoustic spectroscopy , 2008 .

[10]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[11]  Molly K. Gregas,et al.  Trace Molecular Detection via Surface-Enhanced Raman Scattering and Surface-Enhanced Resonance Raman Scattering at a Distance of 15 Meters , 2010, Applied spectroscopy.

[12]  A. Miziolek,et al.  Double pulse laser-induced breakdown spectroscopy of explosives: Initial study towards improved discrimination☆ , 2007 .

[13]  E. Bright Wilson,et al.  Book Reviews: Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra , 1955 .

[14]  L. Pacheco-Londoño,et al.  Remote Continuous Wave and Pulsed Laser Raman Detection of Chemical Warfare Agents Simulants and Toxic Industrial Compounds , 2010 .

[15]  Detection of vapors of explosives and explosive-related compounds by ultraviolet cavity ringdown spectroscopy. , 2007, Applied optics.

[16]  F. Capasso,et al.  Quantum cascade lasers in chemical physics , 2010 .

[17]  Peter J. Yunker,et al.  Suppression of the coffee-ring effect by shape-dependent capillary interactions , 2011, Nature.

[18]  I. R. Lewis,et al.  Interpretation of Raman Spectra of Nitro-Containing Explosive Materials. Part I: Group Frequency and Structural Class Membership , 1997 .

[19]  Manu Prasanna,et al.  High-sensitivity detection of TNT , 2006, Proceedings of the National Academy of Sciences.

[20]  P. Griffiths Fourier Transform Infrared Spectrometry , 2007 .

[21]  John E. Bertie,et al.  An accurate modified Kramers–Kronig transformation from reflectance to phase shift on attenuated total reflection , 1996 .

[22]  Thomas Thundat,et al.  Pump–probe photothermal spectroscopy using quantum cascade lasers , 2012 .

[23]  T. Brill,et al.  Comparison of the molecular structure of hexahydro-1,3,5-trinitro-s-triazine in the vapor, solution and solid phases , 1984 .

[24]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[25]  C. Merten,et al.  Chirality transfer in a methyl lactate-ammonia complex observed by matrix-isolation vibrational circular dichroism spectroscopy. , 2013, Angewandte Chemie.

[26]  Peter R. Griffiths,et al.  Diffuse reflectance measurements by infrared Fourier transform spectrometry , 1978 .

[27]  A. Pettersson,et al.  Laser-based standoff detection of explosives: a critical review , 2009, Analytical and bioanalytical chemistry.

[28]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[29]  F. Hoffmann,et al.  Infrared reflection-absorption spectroscopy of adsorbed molecules , 1983 .

[30]  Paul M. Pellegrino,et al.  Photoacoustic spectroscopy for chemical detection , 2012, Defense + Commercial Sensing.

[31]  C. W. van Neste,et al.  Ultra violet decomposition of surface adsorbed explosives investigated with infrared standoff spectroscopy , 2012 .

[32]  W. Asher,et al.  Vibrational Sum-Frequency Spectroscopy for Trace Chemical Detection on Surfaces at Stand-Off Distances , 2013, Applied Spectroscopy.

[33]  Peter R. Griffiths,et al.  Infrared Microsampling by Diffuse Reflectance Fourier Transform Spectrometry , 1980 .

[34]  Rodney J Bartlett,et al.  RDX geometries, excited states, and revised energy ordering of conformers via MP2 and CCSD(T) methodologies: insights into decomposition mechanism. , 2011, The journal of physical chemistry. A.