Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model

This study evaluates the impact of a recent upgrade in the physics package of the regional atmospheric climate model RACMO2 on the simulated surface mass balance (SMB) of the Antarctic ice sheet. The modelled SMB increases, in particular over the grounded ice sheet of East Antarctica (+44Gt a-1), with a small change in West Antarctica. This mainly results from an increase in precipitation, which is explained by changes in the cloud microphysics, including a new parameterization for ice cloud supersaturation, and changes in large-scale circulation patterns, which alter topographically forced precipitation. The spatial changes in SMB are evaluated using 3234 in situ SMB observations and ice-balance velocities, and the temporal variability using GRACE satellite retrievals. The in situ observations and balance velocities show a clear improvement of the spatial representation of the SMB in the interior of East Antarctica, which has become considerably wetter. No improvements are seen for West Antarctica and the coastal regions. A comparison of model SMB temporal variability with GRACE satellite retrievals shows no significant change in performance.

[1]  W. Greuell,et al.  Numerical modelling of the energy balance and the englacial temperature of the Greenland Ice Sheet. Calculations for the ETH-Camp location (West Greenland, 1155 m a.s.l.) , 1994 .

[2]  Ingo Sasgen,et al.  Limits in detecting acceleration of ice sheet mass loss due to climate variability , 2013 .

[3]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[4]  E. van Meijgaard,et al.  A new, high‐resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling , 2012 .

[5]  G. Krinner,et al.  An updated and quality controlled surface mass balance dataset for Antarctica , 2012 .

[6]  Klaus Gierens,et al.  Ice supersaturation in the ECMWF integrated forecast system , 2007 .

[7]  D. Chambers,et al.  GRACE observes small‐scale mass loss in Greenland , 2008 .

[8]  D. Bromwich,et al.  Modeled Antarctic Precipitation. Part I: Spatial and Temporal Variability* , 2004 .

[9]  E. Meijgaard,et al.  Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica , 2014 .

[10]  S. Palm,et al.  Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation , 2012 .

[11]  M. Flanner,et al.  A new albedo parameterization for use in climate models over the Antarctic ice sheet , 2011 .

[12]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[13]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[14]  M. Broeke,et al.  Modeling drifting snow in Antarctica with a regional climate model: 2. Results , 2012 .

[15]  B. Scheuchl,et al.  Ice Flow of the Antarctic Ice Sheet , 2011, Science.

[16]  Kenneth C. Jezek,et al.  Radarsat Antarctic Mapping Project digital elevation model version 2 , 2001 .

[17]  Bernd Scheuchl,et al.  Mapping of Ice Motion in Antarctica Using Synthetic-Aperture Radar Data , 2012, Remote. Sens..

[18]  E. van Meijgaard,et al.  Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model , 2006 .

[19]  Sivaprasad Gogineni,et al.  Airborne‐radar and ice‐core observations of annual snow accumulation over Thwaites Glacier, West Antarctica confirm the spatiotemporal variability of global and regional atmospheric models , 2013 .

[20]  R. Timmermans,et al.  Refinement and application of a regional atmospheric model for climate scenario calculations of Western Europe , 2012 .

[21]  Bert Wouters,et al.  Irreversible mass loss of Canadian Arctic Archipelago glaciers , 2013 .

[22]  B. Legrésy,et al.  Quantifying the seasonal “breathing” of the Antarctic ice sheet , 2012 .

[23]  Sivaprasad Gogineni,et al.  Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation , 2013 .

[24]  R. Dietrich,et al.  Signal and error in mass change inferences from GRACE: the case of Antarctica , 2009 .

[25]  Bo Sun,et al.  Bedmap2: improved ice bed, surface and thickness datasets for Antarctica , 2012 .

[26]  J. King,et al.  Precipitation, sublimation, and snow drift in the Antarctic Peninsula region from a regional atmospheric model , 2004 .

[27]  M. R. van den Broeke,et al.  Impact of model resolution on simulated wind, drifting snow and surface mass balance in Terre Adélie, East Antarctica , 2012, Journal of Glaciology.

[28]  Eric Rignot,et al.  Recent Antarctic ice mass loss from radar interferometry and regional climate modelling , 2008 .

[29]  X. Fettweis,et al.  Rapid loss of firn pore space accelerates 21st century Greenland mass loss , 2013 .

[30]  S. Seneviratne,et al.  Basin scale estimates of evapotranspiration using GRACE and other observations , 2004 .

[31]  E. Meijgaard,et al.  Evaluation of temperature and wind over Antarctica in a Regional Atmospheric Climate Model using 1 year of automatic weather station data and upper air observations , 2005 .

[32]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[33]  K. Steffen,et al.  Climate of the Greenland ice sheet using a high-resolution climate model – Part 1: Evaluation , 2010 .

[34]  Bob E. Schutz,et al.  A comparison of coincident GRACE and ICESat data over Antarctica , 2009 .

[35]  Matt A. King,et al.  Lower satellite-gravimetry estimates of Antarctic sea-level contribution , 2012, Nature.

[36]  Drifting snow measurements on the Greenland Ice Sheet and their application for model evaluation , 2014 .

[37]  R. Hardy,et al.  An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry , 2000, Journal of Glaciology.

[38]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[39]  X. Fettweis,et al.  Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models , 2010 .

[40]  M. R. van den Broeke,et al.  Characteristics of the Antarctic surface mass balance, 1958–2002, using a regional atmospheric climate model , 2005, Annals of Glaciology.

[41]  S. Swenson,et al.  Accuracy of GRACE mass estimates , 2006 .

[42]  C. Smeets,et al.  Drifting snow measurements on the Greenland Ice Sheet and their application for model evaluation , 2014 .

[43]  Adrian A. Borsa,et al.  A range correction for ICESat and its potential impact on ice-sheet mass balance studies , 2013 .