Throughflow centrality is a global indicator of the functional importance of species in ecosystems

[1]  A. J. Lotka Contribution to the Energetics of Evolution. , 1922, Proceedings of the National Academy of Sciences of the United States of America.

[2]  W. Leontief Studies in the Structure of the American Economy: Theoretical and Empirical Explorations in Input-Output Analysis , 1953 .

[3]  E. Odum Fundamentals of Ecology. , 1955 .

[4]  Wassily Leontief,et al.  The Structure of the U.S. Economy , 1965 .

[5]  R. H. Whittaker,et al.  Dominance and Diversity in Land Plant Communities , 1965, Science.

[6]  Charles H. Hubbell An Input-Output Approach to Clique Identification , 1965 .

[7]  R. Paine Food Web Complexity and Species Diversity , 1966, The American Naturalist.

[8]  Wassily Leontief Input-Output Economics , 1966 .

[9]  E. Odum The strategy of ecosystem development. , 1969, Science.

[10]  B. Parker,et al.  Proceedings of the Colloquium on Conservation Problems in Antarctica, held on 10-12 September, 1971, Blacksburg, Virginia , 1972 .

[11]  P. Bonacich Factoring and weighting approaches to status scores and clique identification , 1972 .

[12]  H. Rittel,et al.  Dilemmas in a general theory of planning , 1973 .

[13]  B. Hannon,et al.  The structure of ecosystems. , 1973, Journal of theoretical biology.

[14]  J. Finn,et al.  Measures of ecosystem structure and function derived from analysis of flows. , 1976, Journal of theoretical biology.

[15]  Robert W. Bosserman,et al.  17 – Propagation of Cause in Ecosystems , 1976 .

[16]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[17]  B. C. Patten,et al.  Systems Analysis and Simulation in Ecology , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  Sven Erik Jørgensen,et al.  A holistic approach to ecological modelling , 1979 .

[19]  Patrick L. Odell,et al.  Chapter 2 – CONCERNING AGGREGATION IN ECOSYSTEM MODELING , 1979 .

[20]  John T. Finn,et al.  Flow analysis of models of the Hubbard Brook Ecosystem. , 1980 .

[21]  John H. Lawton,et al.  ARE FOOD WEBS DIVIDED INTO COMPARTMENTS , 1980 .

[22]  H. Milne,et al.  Energy flow in the Ythan Estuary, Aberdeenshire, Scotland , 1981 .

[23]  Thomas B. Starr,et al.  Hierarchy: Perspectives for Ecological Complexity , 1982 .

[24]  Robert V. O'Neill,et al.  Robust Analysis of Aggregation Error , 1982 .

[25]  P. Bonacich Power and Centrality: A Family of Measures , 1987, American Journal of Sociology.

[26]  Janusz Szyrmer,et al.  Total flows in ecosystems , 1987 .

[27]  H. Odum,et al.  Self-Organization, Transformity, and Information , 1988, Science.

[28]  R. Ulanowicz Growth and development : ecosystems phenomenology , 1988 .

[29]  R. Ulanowicz,et al.  The Seasonal Dynamics of The Chesapeake Bay Ecosystem , 1989 .

[30]  Noah E. Friedkin,et al.  Theoretical Foundations for Centrality Measures , 1991, American Journal of Sociology.

[31]  Robert E. Ulanowicz,et al.  The Comparative Ecology of Six Marine Ecosystems , 1991 .

[32]  L. Freeman,et al.  Centrality in valued graphs: A measure of betweenness based on network flow , 1991 .

[33]  Raymond L. Lindeman The trophic-dynamic aspect of ecology , 1942 .

[34]  B. Walker Biodiversity and Ecological Redundancy , 1992 .

[35]  H. Ibarra NETWORK CENTRALITY, POWER, AND INNOVATION INVOLVEMENT: DETERMINANTS OF TECHNICAL AND ADMINISTRATIVE ROLES , 1993 .

[36]  D. Doak,et al.  The Keystone-Species Concept in Ecology and ConservationManagement and policy must explicitly consider the complexity of interactions in natural systems , 1993 .

[37]  John H. Lawton,et al.  What Do Species Do in Ecosystems , 1994 .

[38]  E. D. Schneider,et al.  Life as a manifestation of the second law of thermodynamics , 1994 .

[39]  J. Lawton,et al.  Organisms as ecosystem engineers , 1994 .

[40]  Bernard C. Patten,et al.  Network integration of ecological extremal principles: exergy, emergy, power, ascendency, and indirect effects , 1995 .

[41]  J. Castilla,et al.  Challenges in the Quest for Keystones , 1996 .

[42]  R. Ulanowicz Ecology, the ascendent perspective , 1997 .

[43]  Robert E. Ulanowicz,et al.  Comparative ecosystem trophic structure of three U.S. mid-Atlantic estuaries , 1997 .

[44]  D. Baird,et al.  Assessment of spatial and temporal variability in ecosystem attributes of the St Marks national wildlife refuge, Apalachee bay, Florida , 1998 .

[45]  Felix Müller,et al.  Eco Targets, Goal Functions, and Orientors , 1998 .

[46]  B. C. Patten,et al.  Review of the Foundations of Network Environ Analysis , 1999, Ecosystems.

[47]  Brian D. Fath,et al.  Quantifying resource homogenization using network flow analysis , 1999 .

[48]  Robert E. Ulanowicz,et al.  Benthic-pelagic switching in a coastal subtropical lagoon , 1999 .

[49]  D. Eggleston,et al.  Computer simulations of wind-induced Estuarine circulation patterns and estuary-shelf exchange processes : The potential role of wind forcing on larval transport , 1999 .

[50]  Sven Erik Jørgensen,et al.  Ecosystems emerging: 3. Openness , 1999 .

[51]  Johanna J. Heymans,et al.  A carbon flow model and network analysis of the northern Benguela upwelling system, Namibia , 2000 .

[52]  R. Elmgren,et al.  Carbon flows in Baltic Sea food webs — a re-evaluation using a mass balance approach , 2000 .

[53]  B. C. Patten,et al.  Ecosystems emerging:: 4. growth , 2000 .

[54]  Britta Ruhnau,et al.  Eigenvector-centrality - a node-centrality? , 2000, Soc. Networks.

[55]  B. C. Patten,et al.  Complementarity of ecological goal functions. , 2001, Journal of theoretical biology.

[56]  W. Reed The Pareto, Zipf and other power laws , 2001 .

[57]  H. Caswell Matrix population models : construction, analysis, and interpretation , 2001 .

[58]  Virginia H. Dale,et al.  Challenges in the development and use of ecological indicators , 2001 .

[59]  Johanna J. Heymans,et al.  Network analysis of the South Florida Everglades graminoid marshes and comparison with nearby cypress ecosystems , 2002 .

[60]  Robert E. Ulanowicz,et al.  The effects of taxonomic aggregation on network analysis , 2002 .

[61]  Cristina Bondavalli,et al.  Towards a sustainable use of water resources: a whole-ecosystem approach using network analysis , 2002 .

[62]  Albert-László Barabási,et al.  Linked: The New Science of Networks , 2002 .

[63]  C. S. Holling,et al.  Panarchy Understanding Transformations in Human and Natural Systems , 2002 .

[64]  M. C. Newman,et al.  Fundamentals of Ecotoxicology, Second Edition , 2002 .

[65]  D. Mason,et al.  Compartments revealed in food-web structure , 2003, Nature.

[66]  R. Solé Linked: The New Science of Networks.ByAlbert‐László Barabási.Cambridge (Massachusetts): Perseus Publishing.$26.00. vii + 280 p; ill.; index. ISBN: 0–7382–0667–9. 2002. , 2003 .

[67]  Stefano Allesina,et al.  Steady state of ecosystem flow networks: a comparison between balancing procedures , 2003 .

[68]  Stefan Richter,et al.  Centrality Indices , 2004, Network Analysis.

[69]  Janet K. Allen,et al.  Applying Ecological Input‐Output Flow Analysis to Material Flows in Industrial Systems: Part I: Tracing Flows , 2004 .

[70]  Janet K. Allen,et al.  Applying Ecological Input‐Output Flow Analysis to Material Flows in Industrial Systems: Part II: Flow Metrics , 2004 .

[71]  Robert R. Christian,et al.  CONSEQUENCES OF HYPOXIA ON ESTUARINE ECOSYSTEM FUNCTION: ENERGY DIVERSION FROM CONSUMERS TO MICROBES , 2004 .

[72]  Santosh S. Vempala,et al.  Flow metrics , 2004, Theor. Comput. Sci..

[73]  D. Baird,et al.  Energy flow of a boreal intertidal ecosystem, the Sylt-Rømø Bight , 2004 .

[74]  F. Jordán,et al.  Characterizing the importance of habitat patches and corridors in maintaining the landscape connectivity of a Pholidoptera transsylvanica (Orthoptera) metapopulation , 2003, Landscape Ecology.

[75]  F. Chapin,et al.  EFFECTS OF BIODIVERSITY ON ECOSYSTEM FUNCTIONING: A CONSENSUS OF CURRENT KNOWLEDGE , 2005 .

[76]  U. M. Scharler,et al.  The consequences of the aggregation of detritus pools in ecological networks , 2005 .

[77]  S. Allesina,et al.  Ecological subsystems via graph theory: the role of strongly connected components , 2005 .

[78]  Stephen P. Borgatti,et al.  Centrality and network flow , 2005, Soc. Networks.

[79]  Julia L. Blanchard,et al.  Aggregation and removal of weak-links in food-web models: system stability and recovery from disturbance , 2005 .

[80]  Matthew W. Hahn,et al.  Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. , 2005, Molecular biology and evolution.

[81]  J. Webster,et al.  Loss of foundation species: consequences for the structure and dynamics of forested ecosystems , 2005 .

[82]  S. Suh,et al.  Industrial ecology and input-output economics: an introduction , 2005 .

[83]  D. Baird,et al.  A comparison of selected ecosystem attributes of three South African estuaries with different freshwater inflow regimes, using network analysis , 2005 .

[84]  Robert E. Ulanowicz,et al.  Role of network analysis in comparative ecosystem ecology of estuaries , 2005 .

[85]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  Brian D. Fath,et al.  A MATLABreg function for Network Environ Analysis , 2006, Environ. Model. Softw..

[87]  Martin G. Everett,et al.  A Graph-theoretic perspective on centrality , 2006, Soc. Networks.

[88]  Ferenc Jordán,et al.  Topological keystone species : measures of positional importance in food webs , 2006 .

[89]  Fundamental Processes in Ecology: An Earth Systems Approach , 2006 .

[90]  Brian D Fath,et al.  Functional integration of ecological networks through pathway proliferation. , 2006, Journal of theoretical biology.

[91]  Stuart R. Borrett,et al.  Indirect effects and distributed control in ecosystems: Comparative network environ analysis of a seven-compartment model of nitrogen flow in the Neuse River estuary, USA—Time series analysis , 2007 .

[92]  Sven E. Jørgensen,et al.  A New Ecology: Systems Perspective , 2007 .

[93]  Ferenc Jordán,et al.  Weighting, scale dependence and indirect effects in ecological networks: A comparative study , 2007 .

[94]  Bruce Hannon,et al.  Ecological network analysis : network construction , 2007 .

[95]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[96]  F. Jordán,et al.  Quantifying positional importance in food webs: A comparison of centrality indices , 2007 .

[97]  Stuart R. Borrett,et al.  Indirect effects and distributed control in ecosystems: Distributed control in the environ networks of a seven-compartment model of nitrogen flow in the Neuse River Estuary, USA—Time series analysis , 2007 .

[98]  J. Link,et al.  The Northeast U.S. continental shelf Energy Modeling and Analysis exercise (EMAX): Ecological network model development and basic ecosystem metrics , 2008 .

[99]  Ernesto Estrada,et al.  Using network centrality measures to manage landscape connectivity. , 2008, Ecological applications : a publication of the Ecological Society of America.

[100]  Cynthia M. Lakon,et al.  How Correlated Are Network Centrality Measures? , 2008, Connections.

[101]  Santanu Ray,et al.  Comparative study of virgin and reclaimed islands of Sundarban mangrove ecosystem through network analysis , 2008 .

[102]  D. Mason,et al.  Invasive species impacts on ecosystem structure and function: A comparison of the Bay of Quinte, Canada, and Oneida Lake, USA, before and after zebra mussel invasion , 2009 .

[103]  B. Walsh,et al.  Abundant Genetic Variation + Strong Selection = Multivariate Genetic Constraints: A Geometric View of Adaptation , 2009 .

[104]  D. Mason,et al.  Invasive species impacts on ecosystem structure and function: A comparison of Oneida Lake, New York, USA, before and after zebra mussel invasion , 2009 .

[105]  Stefano Allesina,et al.  Googling Food Webs: Can an Eigenvector Measure Species' Importance for Coextinctions? , 2009, PLoS Comput. Biol..

[106]  B. C. Patten,et al.  Rapid development of indirect effects in ecological networks , 2010 .

[107]  R. D. Groot,et al.  Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making , 2010 .

[108]  Yan Zhang,et al.  Ecological network analysis of an urban water metabolic system: model development, and a case study for Beijing. , 2010, The Science of the total environment.

[109]  Jens M. Olesen,et al.  Centrality measures and the importance of generalist species in pollination networks , 2010 .

[110]  Ernesto Estrada Generalized walks-based centrality measures for complex biological networks. , 2010, Journal of theoretical biology.

[111]  Ulrik Brandes,et al.  Network Analysis: Methodological Foundations , 2010 .

[112]  Ferenc Jordán,et al.  Node centrality indices in food webs: Rank orders versus distributions , 2010 .

[113]  P. Guimarães,et al.  What makes a species central in a cleaning mutualism network , 2010 .

[114]  Andria K. Salas,et al.  Evidence for resource homogenization in 50 trophic ecosystem networks , 2010, 1104.0021.

[115]  Santiago Saura,et al.  Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments , 2010 .

[116]  Sebastián Urrutia,et al.  Organising metabolic networks: Cycles in flux distributions. , 2010, Journal of theoretical biology.

[117]  H. Odum,et al.  TIME'S SPEED REGULATOR: THE OPTIMUM EFFICIENCY FOR MAXIMUM POWER OUTPUT IN PHYSICAL AND BIOLOGICAL SYSTEMS , 2011 .

[118]  C. Kennedy,et al.  The study of urban metabolism and its applications to urban planning and design. , 2011, Environmental pollution.

[119]  Pedro Jordano,et al.  Evolution and Coevolution in Mutualistic Networks , 2022 .

[120]  Stuart R. Borrett,et al.  Evidence for the dominance of indirect effects in 50 trophic ecosystem networks , 2010, 1009.1841.

[121]  S. Borrett,et al.  Reconnecting environs to their environment , 2011 .

[122]  Ferenc Jordán,et al.  Contribution of habitat patches to network connectivity: Redundancy and uniqueness of topological indices , 2011 .

[123]  Alan J. Butler,et al.  From Populations to Ecosystems: Theoretical Foundations for a New Ecological Synthesis , 2011 .

[124]  Serguei Saavedra,et al.  Strong contributors to network persistence are the most vulnerable to extinction , 2011, Nature.

[125]  John R. Schramski,et al.  Network environ theory, simulation, and EcoNet® 2.0 , 2011, Environ. Model. Softw..

[126]  S. Borrett,et al.  Environ centrality reveals the tendency of indirect effects to homogenize the functional importance of species in ecosystems. , 2011, Journal of theoretical biology.

[127]  Yan Zhang,et al.  Ecological network analysis of China's societal metabolism. , 2012, Journal of environmental management.

[128]  David E. Hines,et al.  A network model shows the importance of coupled processes in the microbial N cycle in the Cape Fear River Estuary , 2012 .

[129]  F. Müller,et al.  The indicator side of ecosystem services , 2012 .

[130]  Andrew D Higginson,et al.  Heavy use of equations impedes communication among biologists , 2012, Proceedings of the National Academy of Sciences.

[131]  Edwin Zondervan,et al.  Methodology for Assessment and Optimization of Industrial Eco-Systems , 2012 .

[132]  Bin Chen,et al.  Network environ perspective for urban metabolism and carbon emissions: a case study of Vienna, Austria. , 2012, Environmental science & technology.

[133]  Brian D. Fath,et al.  Dependence of network metrics on model aggregation and throughflow calculations: Demonstration using the Sylt–Rømø Bight Ecosystem , 2013 .

[134]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .