Intrinsic quantum confinement in formamidinium lead triiodide perovskite

[1]  A. Goñi,et al.  Reply to the “Comment on the publication ‘Ferroelectricity-free lead halide perovskites’ by Gomez et al.” by Colsmann et al. , 2020 .

[2]  A. Goñi,et al.  Phase Diagram of Methylammonium/Formamidinium Lead Iodide Perovskite Solid Solutions from Temperature-Dependent Photoluminescence and Raman Spectroscopies , 2020 .

[3]  M. Hoffmann,et al.  Ferroelectric Poling of Methylammonium Lead Iodide Thin Films , 2019, Organic, Hybrid, and Perovskite Photovoltaics XXI.

[4]  Jay B. Patel,et al.  Growth modes and quantum confinement in ultrathin vapour-deposited MAPbI3 films. , 2019, Nanoscale.

[5]  A. Goñi,et al.  Ferroelectricity-free lead halide perovskites , 2019, Energy & environmental science.

[6]  Song Jin,et al.  Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties , 2019, Nature Reviews Materials.

[7]  Alexander Colsmann,et al.  Ferroelectric Properties of Perovskite Thin Films and Their Implications for Solar Energy Conversion , 2019, Advanced materials.

[8]  A. Walsh,et al.  Dielectric and ferroic properties of metal halide perovskites , 2019, APL Materials.

[9]  K. McKenna Electronic Properties of {111} Twin Boundaries in a Mixed-Ion Lead Halide Perovskite Solar Absorber , 2018, ACS Energy Letters.

[10]  M. Johnston,et al.  Impact of the Organic Cation on the Optoelectronic Properties of Formamidinium Lead Triiodide. , 2018, The journal of physical chemistry letters.

[11]  Tik Lun Leung,et al.  Formamidinium‐Based Lead Halide Perovskites: Structure, Properties, and Fabrication Methodologies , 2018 .

[12]  M. Islam,et al.  Phase Behavior and Polymorphism of Formamidinium Lead Iodide , 2018 .

[13]  Wenping Hu,et al.  Amplified Spontaneous Emission Based on 2D Ruddlesden–Popper Perovskites , 2018 .

[14]  Jay B. Patel,et al.  Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process , 2018, Nature Communications.

[15]  J. Conesa,et al.  Ferroelectric Domains May Lead to Two-Dimensional Confinement of Holes, but not of Electrons, in CH3NH3PbI3 Perovskite , 2017 .

[16]  Jay B. Patel,et al.  Large-Area, Highly Uniform Evaporated Formamidinium Lead Triiodide Thin Films for Solar Cells , 2017 .

[17]  Jay B. Patel,et al.  Photon Reabsorption Masks Intrinsic Bimolecular Charge-Carrier Recombination in CH3NH3PbI3 Perovskite. , 2017, Nano letters.

[18]  B. Nickel,et al.  Advances in Quantum‐Confined Perovskite Nanocrystals for Optoelectronics , 2017 .

[19]  Wei‐Liang Chen,et al.  Origin of long lifetime of band-edge charge carriers in organic–inorganic lead iodide perovskites , 2017, Proceedings of the National Academy of Sciences.

[20]  M. Johnston,et al.  Band‐Tail Recombination in Hybrid Lead Iodide Perovskite , 2017 .

[21]  Xiang Zhang,et al.  2D Crystals Significantly Enhance the Performance of a Working Fuel Cell , 2017 .

[22]  Wei Li,et al.  Direct observation of intrinsic twin domains in tetragonal CH3NH3PbI3 , 2017, Nature Communications.

[23]  Vijay S. Pande,et al.  Molecular dynamics simulations reveal ligand-controlled positioning of a peripheral protein complex in membranes , 2017, Nature Communications.

[24]  M. Yoon,et al.  Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite , 2016, Science Advances.

[25]  M. Kanatzidis,et al.  Halide Perovskites: Poor Man's High‐Performance Semiconductors , 2016, Advanced materials.

[26]  Feliciano Giustino,et al.  Electron–phonon coupling in hybrid lead halide perovskites , 2016, Nature Communications.

[27]  Laura M. Herz,et al.  Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites. , 2016, Annual review of physical chemistry.

[28]  W. Tremel,et al.  Ferroelastic Fingerprints in Methylammonium Lead Iodide Perovskite , 2016 .

[29]  M. Johnston,et al.  Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies. , 2016, Accounts of chemical research.

[30]  D. Rossi,et al.  Role of Ferroelectric Nanodomains in the Transport Properties of Perovskite Solar Cells. , 2016, Nano letters.

[31]  J. Even,et al.  Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications , 2015, Light: Science & Applications.

[32]  M. Johnston,et al.  Charge‐Carrier Dynamics and Mobilities in Formamidinium Lead Mixed‐Halide Perovskites , 2015, Advanced materials.

[33]  M. Mainas,et al.  Absorption F-sum rule for the exciton binding energy in methylammonium lead halide perovskites. , 2015, The journal of physical chemistry letters.

[34]  A. Walsh,et al.  Cubic Perovskite Structure of Black Formamidinium Lead Iodide, α-[HC(NH2)2]PbI3, at 298 K , 2015, The Journal of Physical Chemistry Letters.

[35]  A. Walsh,et al.  Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide , 2015, 1504.07508.

[36]  Fan Zheng,et al.  Ferroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites. , 2015, The journal of physical chemistry letters.

[37]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[38]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[39]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[40]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  T. Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[42]  Sergei V. Kalinin,et al.  Conduction at domain walls in oxide multiferroics. , 2009, Nature materials.

[43]  Andrea Marini,et al.  yambo: An ab initio tool for excited state calculations , 2008, Comput. Phys. Commun..

[44]  D. Vanderbilt,et al.  Ab initio study of ferroelectric domain walls in PbTiO 3 , 2001, cond-mat/0109257.

[45]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[46]  G. Bastard,et al.  Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. , 1990, Physical review. B, Condensed matter.

[47]  M. Steigerwald,et al.  Electron–vibration coupling in semiconductor clusters studied by resonance Raman spectroscopy , 1989 .

[48]  I.P. Kaminow,et al.  Principles and applications of ferroelectrics and related materials , 1978, Proceedings of the IEEE.

[49]  R. J. Elliott,et al.  Intensity of Optical Absorption by Excitons , 1957 .

[50]  Andrew M. Rappe,et al.  Thin-film ferroelectric materials and their applications , 2017 .