Dielectric elastomer bender actuator applied to modular robotics

This paper addresses the miniaturization of the modules of a modular robot - a major challenge in the field. State of the art modules typically use electromagnetic motors for mobility and self-reconfiguration. However, electromagnetic motor performance reduces upon downscaling to the mesoscale. The smallest self-contained module uses shape memory alloy which is inherently inefficient, slow, and difficult to position control. This work surveys available actuation technologies with respect to appropriate figures of merit. It concludes that dielectric elastomer actuation is promising. We present the design and experimental analysis of an agonist-antagonist dielectric elastomer actuator configuration 7 times smaller than previously demonstrated. Demonstrations with two modules show module bending up to 15° in various modular robot morphologies. In addition, we demonstrate parallel actuation: a pair of modules acting in parallel can lift twice the load a single module can.

[1]  Jonas Neubert,et al.  A robotic module for stochastic fluidic assembly of 3D self-reconfiguring structures , 2010, 2010 IEEE International Conference on Robotics and Automation.

[2]  D. Rossi,et al.  Dielectric elastomers as electromechanical transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology , 2008 .

[3]  Ron Pelrine,et al.  Multiple-degrees-of-freedom electroelastomer roll actuators , 2004 .

[4]  R. Fearing,et al.  Optimal energy density piezoelectric bending actuators , 2005 .

[5]  Hod Lipson,et al.  Hydrodynamically tunable affinities for fluidic assembly. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[6]  Siegfried Bauer,et al.  New design concept for dielectric elastomer actuators , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[7]  Seth Copen Goldstein,et al.  Stress-driven MEMS assembly + electrostatic forces = 1mm diameter robot , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Mark Yim,et al.  Scalable modular self-reconfigurable robots using external actuation , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Daniela Rus,et al.  Robot pebbles: One centimeter modules for programmable matter through self-disassembly , 2010, 2010 IEEE International Conference on Robotics and Automation.

[10]  Mark Yim,et al.  PolyBot: a modular reconfigurable robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[11]  Eiichi Yoshida,et al.  A Hardware Prototype Self-Reconfigurable Modular Microrobot that Uses Shape Memory Alloy , 2002 .

[12]  Padmanabhan Pillai,et al.  Collective Actuation , 2008, Int. J. Robotics Res..

[13]  G. Kovács,et al.  Design and characterization of an active hinge segment based on soft dielectric EAPs , 2008 .

[14]  Metin Sitti,et al.  Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems , 2011, 2011 IEEE International Conference on Robotics and Automation.

[15]  H Tanaka,et al.  Programmable matter by folding , 2010, Proceedings of the National Academy of Sciences.

[16]  B.R. Donald,et al.  Planar Microassembly by Parallel Actuation of MEMS Microrobots , 2008, Journal of Microelectromechanical Systems.

[17]  K. Tomita,et al.  Get Back in Shape ! A Hardware Prototype Self-Reconfigurable Modular Microrobot that Uses Shape Memory Alloy , 2001 .

[18]  Eiichi Yoshida,et al.  Hardware design of modular robotic system , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[19]  Ron Pelrine,et al.  Ultra-High Strain Response of Elastomeric Polymer Dielectrics , 1999 .

[20]  Paolo Dario,et al.  Assembling reconfigurable endoluminal surgical systems: opportunities and challenges , 2009 .

[21]  Mark H. Yim,et al.  Locomotion With A Unit-Modular Reconfigurable Robot , 1995 .

[22]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[23]  Patrick Lochmatter,et al.  Development of a shell-like electroactive polymer (EAP) actuator , 2007 .

[24]  Yoseph Bar-Cohen,et al.  Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Edition , 2004 .

[25]  Metin Sitti,et al.  Assembly and Disassembly of Magnetic Mobile Micro-Robots towards 2-D Reconfigurable Micro-Systems , 2009, ISRR.

[26]  Mark Yim,et al.  Strength analysis of miniature folded right angle tetrahedron chain Programmable Matter , 2010, 2010 IEEE International Conference on Robotics and Automation.

[27]  Eiichi Yoshida,et al.  Get back in shape! [SMA self-reconfigurable microrobots] , 2002, IEEE Robotics Autom. Mag..

[28]  Kasper Stoy,et al.  Self-Reconfigurable Robots: An Introduction , 2010 .

[29]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[30]  David Johan Christensen,et al.  Anatomy-based organization of morphology and control in self-reconfigurable modular robots , 2010, Neural Computing and Applications.

[31]  Wei-Min Shen,et al.  Robot modularity for self-reconfiguration , 1999, Optics East.