Visual Analytics for Comparison of Ocean Model Output with Reference Data: Detecting and Analyzing Geophysical Processes Using Clustering Ensembles

Researchers assess the quality of an ocean model by comparing its output to that of a previous model version or to observations. One objective of the comparison is to detect and to analyze differences and similarities between both data sets regarding geophysical processes, such as particular ocean currents. This task involves the analysis of thousands or hundreds of thousands of geographically referenced temporal profiles in the data. To cope with the amount of data, modelers combine aggregation of temporal profiles to single statistical values with visual comparison. Although this strategy is based on experience and a well-grounded body of expert knowledge, our discussions with domain experts have shown that it has two limitations: (1) using a single statistical measure results in a rather limited scope of the comparison and in significant loss of information, and (2) the decisions modelers have to make in the process may lead to important aspects being overlooked.

[1]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[2]  Doris Dransch,et al.  Interactive visual summaries for detection and assessment of spatiotemporal patterns in geospatial time series , 2014, Inf. Vis..

[3]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[4]  Thomas Nocke,et al.  Visual exploration and evaluation of climate-related simulation data , 2007, 2007 Winter Simulation Conference.

[5]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[6]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[7]  S. Mohanavalli,et al.  Improving the quality of clustering using cluster ensembles , 2013, 2013 IEEE CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES.

[8]  Jürgen Sündermann,et al.  Consideration of ocean tides in an OGCM and impacts on subseasonal to decadal polar motion excitation , 2001 .

[9]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[10]  Jonathan C. Roberts,et al.  Visualization for the Physical Sciences , 2012, Comput. Graph. Forum.

[11]  Helwig Hauser,et al.  Hypothesis Generation in Climate Research with Interactive Visual Data Exploration , 2008, IEEE Transactions on Visualization and Computer Graphics.

[12]  Tossapon Boongoen,et al.  Link-based cluster ensembles for heterogeneous biological data analysis , 2010, 2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[13]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[14]  Alan M. MacEachren,et al.  How Maps Work - Representation, Visualization, and Design , 1995 .

[15]  Helwig Hauser,et al.  Accepted for Publication in Ieee Transactions on Visualization and Computer Graphics, Authors' Personal Copy 1 Interactive Visual Analysis of Heterogeneous Scientific Data across an Interface , 2022 .

[16]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[17]  Gennady L. Andrienko,et al.  Exploratory spatio-temporal visualization: an analytical review , 2003, J. Vis. Lang. Comput..

[18]  Helwig Hauser,et al.  Exploration of Climate Data Using Interactive Visualization , 2010 .

[19]  Han-Wei Shen,et al.  Multiscale Time Activity Data Exploration via Temporal Clustering Visualization Spreadsheet , 2009, IEEE Transactions on Visualization and Computer Graphics.

[20]  James P. Ahrens,et al.  Verifying Scientific Simulations via Comparative and Quantitative Visualization , 2010, IEEE Computer Graphics and Applications.

[21]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[22]  Gennady L. Andrienko,et al.  A visual analytics framework for spatio-temporal analysis and modelling , 2013, Data Mining and Knowledge Discovery.

[23]  Heidrun Schumann,et al.  Visualization of Time-Oriented Data , 2011, Human-Computer Interaction Series.

[24]  Daniel A. Keim,et al.  A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage , 2010, J. Locat. Based Serv..

[25]  Kevin E. Trenberth,et al.  Climate System Modeling , 2010 .

[26]  Doris Dransch,et al.  A Visual Analysis Concept for the Validation of Geoscientific Simulation Models , 2012, IEEE Transactions on Visualization and Computer Graphics.

[27]  Thomas Ertl,et al.  Visualization of Temporal Similarity in Field Data , 2012, IEEE Transactions on Visualization and Computer Graphics.

[28]  Paul D. McNicholas,et al.  Model-Based Clustering , 2016, Journal of Classification.

[29]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[30]  Jin Chen,et al.  A Visualization System for Space-Time and Multivariate Patterns (VIS-STAMP) , 2006, IEEE Transactions on Visualization and Computer Graphics.

[31]  P. Rheingans,et al.  SimilarityExplorer : A Visual Inter-Comparison Tool for Multifaceted Climate Data , 2013 .

[32]  Editors , 1986, Brain Research Bulletin.

[33]  AndrienkoNatalia,et al.  A visual analytics framework for spatio-temporal analysis and modelling , 2013 .

[34]  Thomas Nocke,et al.  Information Visualization in Climate Research , 2011, 2011 15th International Conference on Information Visualisation.

[35]  Cynthia A. Brewer,et al.  ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps , 2003 .

[36]  Ana L. N. Fred,et al.  Data clustering using evidence accumulation , 2002, Object recognition supported by user interaction for service robots.

[37]  T. Warren Liao,et al.  Clustering of time series data - a survey , 2005, Pattern Recognit..

[38]  Doris Dransch,et al.  Assessing the quality of geoscientific simulation models with visual analytics methods – a design study , 2010, Int. J. Geogr. Inf. Sci..

[39]  Fang Liu,et al.  Spectral Clustering Ensemble Applied to SAR Image Segmentation , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Péter Gács,et al.  Information Distance , 1998, IEEE Trans. Inf. Theory.

[41]  G. Andrienko,et al.  Exploratory analysis of spatial and temporal data , 2013 .

[42]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[43]  Dirk Van,et al.  Ensemble Methods: Foundations and Algorithms , 2012 .

[44]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[45]  Daniel A. Keim,et al.  Space‐in‐Time and Time‐in‐Space Self‐Organizing Maps for Exploring Spatiotemporal Patterns , 2010, Comput. Graph. Forum.

[46]  Zhiwen Yu,et al.  Knowledge Based Cluster Ensemble for Cancer Discovery From Biomolecular Data , 2011, IEEE Transactions on NanoBioscience.