Electrical and material characterizations of high-permittivity HfxTi1−xO2 gate insulators

High-permittivity hafnium titanate (HfxTi1−xO2) films of various compositions have been investigated. Chemical-vapor deposited thin films have well-controlled composition and a smooth surface. Thicker films show large, highly anisotropic grains with their long axis in the plane of the film. Electrical measurements showed that the interfacial layer equivalent oxide thickness (EOT) decreases linearly with increasing Hf content. Electron energy-loss spectroscopy in scanning transmission electron microscopy indicates that the interfacial layer is primarily SiO2. In the composition range of 0.3<x<0.5, the permittivity of the high-κ films increases linearly with increasing Ti content. For values of x<0.3, the film’s permittivity is close to that of pure HfO2(∼20), while for Ti-rich films the permittivity is close to that of pure TiO2(∼50). For films with a physical thickness less than 10 nm, the leakage current decreases as Ti increases for a fixed EOT.

[1]  M. Li,et al.  Electrical conduction and band offsets in Si/HfxTi1−xO2/metal structures , 2004 .

[2]  Y.H. Kim,et al.  A capacitance-based methodology for work function extraction of metals on high-/spl kappa/ , 2004, IEEE Electron Device Letters.

[3]  M. Lemberger,et al.  Different current conduction mechanisms through thin high-kHfxTiySizO films due to the varying Hf to Ti ratio , 2004 .

[4]  S. Campbell,et al.  A study of mixtures of HfO 2 and TiO 2 as high- k gate dielectrics , 2004 .

[5]  K. Honda,et al.  Pulsed Laser Deposition and Analysis for Structural and Electrical Properties of HfO2–TiO2 Composite Films , 2004 .

[6]  C. Leroux,et al.  Electrical and physico-chemical characterization of HfO2/SiO2 gate oxide stacks prepared by atomic layer deposition , 2003 .

[7]  L. Pantisano,et al.  Origin of the threshold voltage instability in SiO2/HfO2 dual layer gate dielectrics , 2003, IEEE Electron Device Letters.

[8]  Ian W. Boyd,et al.  Investigation of Ti doped HfO2 thin films deposited by photo-CVD , 2003 .

[9]  Chenming Hu,et al.  Effects of high-/spl kappa/ gate dielectric materials on metal and silicon gate workfunctions , 2002, IEEE Electron Device Letters.

[10]  G. Wilk,et al.  Chemical vapor deposition of HfO2 films on Si(100) , 2002 .

[11]  D. Vanderbilt,et al.  First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide , 2002, cond-mat/0202454.

[12]  E. Cartier,et al.  Ultrathin high-K metal oxides on silicon: processing, characterization and integration issues , 2001 .

[13]  R. Gordon,et al.  Vapor Deposition of Metal Oxides and Silicates: Possible Gate Insulators for Future Microelectronics , 2001 .

[14]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[15]  Mingzhen Xu,et al.  Numerical analysis for root-mean-square roughness of SiO2/Si interface on direct tunneling current in ultrathin MOSFETs , 2001 .

[16]  J. Robertson Band offsets of wide-band-gap oxides and implications for future electronic devices , 2000 .

[17]  A. Stesmans,et al.  Trap-assisted tunneling in high permittivity gate dielectric stacks , 2000 .

[18]  K. Kukli,et al.  Influence of atomic layer deposition parameters on the phase content of Ta2O5 films , 2000 .

[19]  M. Leskelä,et al.  In Situ Mass Spectrometry Study on Surface Reactions in Atomic Layer Deposition of Al2O3 Thin Films from Trimethylaluminum and Water , 2000 .

[20]  Evgeni P. Gusev,et al.  Structure and stability of ultrathin zirconium oxide layers on Si(001) , 2000 .

[21]  S. George,et al.  ZrO2 film growth by chemical vapor deposition using zirconium tetra-tert-butoxide , 1999 .

[22]  Jeffrey T. Roberts,et al.  Does Chemistry Really Matter in the Chemical Vapor Deposition of Titanium Dioxide? Precursor and Kinetic Effects on the Microstructure of Polycrystalline Films , 1999 .

[23]  Stephen A. Campbell,et al.  Titanium dioxide (TiO2)-based gate insulators , 1999, IBM J. Res. Dev..

[24]  Steven M. George,et al.  Al3O3 thin film growth on Si(100) using binary reaction sequence chemistry , 1997 .

[25]  Mikko Ritala,et al.  Tailoring the dielectric properties of HfO2–Ta2O5 nanolaminates , 1996 .

[26]  Lee,et al.  Lattice dynamics and dielectric properties of incipient ferroelectric TiO2 rutile. , 1994, Physical review. B, Condensed matter.

[27]  Ching,et al.  Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. , 1994, Physical review. B, Condensed matter.

[28]  R. Ruh,et al.  Phase Relations and Thermal Expansion in the System HfO2‐TiO2 , 1976 .

[29]  R. W. Lynch,et al.  Thermal Expansion, Compressibility, and Polymorphism in Hafnium and Zirconium Titanates , 1972 .

[30]  S. Campbell,et al.  Effects of annealing on charge in HfO/sub 2/ gate stacks , 2005, IEEE Electron Device Letters.