Free-volume correlation with mechanical and dielectric properties of natural rubber/multi walled carbon nanotubes composites

[1]  M. Rahaman,et al.  Electrical properties of polyvinylidene fluoride (PVDF)/multi-walled carbon nanotube (MWCNT) semi-transparent composites: Modelling of DC conductivity , 2015 .

[2]  Shouxiang Jiang,et al.  Carbon nanotubes based high temperature vulcanized silicone rubber nanocomposite with excellent elasticity and electrical properties , 2014 .

[3]  K. Sadasivuni,et al.  Designing dual phase sensing materials from polyaniline filled styrene–isoprene–styrene composites , 2014 .

[4]  Sabu Thomas,et al.  Carbon nanotube based elastomer composites – an approach towards multifunctional materials , 2014 .

[5]  Sabu Thomas,et al.  Evolution from graphite to graphene elastomer composites , 2014 .

[6]  Joung-Sook Hong,et al.  Influence of non-covalent functionalization of carbon nanotubes on the rheological behavior of natural rubber latex nanocomposites , 2014 .

[7]  K. Matsunaga,et al.  Effects of fullerene derivatives on the gas permeability of thermoplastic polyurethane elastomers , 2014 .

[8]  B. C. Ng,et al.  Directional alignment of carbon nanotubes in polymer matrices: Contemporary approaches and future advances , 2014 .

[9]  Sabu Thomas,et al.  Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application , 2013 .

[10]  Sabu Thomas,et al.  Viscoelastic behavior and reinforcement mechanism in rubber nanocomposites in the vicinity of spherical nanoparticles. , 2013, The journal of physical chemistry. B.

[11]  Lu Gan,et al.  Improvement of carbon nanotubes dispersion by chitosan salt and its application in silicone rubber , 2013 .

[12]  N. Ning,et al.  Filler dispersion evolution of acrylonitrile–butadiene rubber/graphite nanocomposites during processing , 2013 .

[13]  Sabu Thomas,et al.  Development of poly(isobutylene-co-isoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensingapplications , 2013 .

[14]  A. Somoza,et al.  Effect of the nano-cellulose content on the properties of reinforced polyurethanes. A study using mechanical tests and positron anihilation spectroscopy , 2013 .

[15]  A. Marzocca,et al.  Influence of the filler content on the free nanohole volume in epoxy-based composites , 2013 .

[16]  Sabu Thomas,et al.  Clay Intercalation and its Influence on the Morphology and Transport Properties of EVA/Clay Nanocomposites , 2012 .

[17]  Xiaoli Yan,et al.  Investigation of the rheological and conductive properties of multi-walled carbon nanotube/polycarbonate composites by positron annihilation techniques , 2012 .

[18]  L. Bokobza,et al.  Raman spectroscopic characterization of multiwall carbon nanotubes and of composites , 2012 .

[19]  X. Tao,et al.  Investigation on the electrical response behaviors of multiwalled carbon nanotube/polyurethane composite in organic solvent vapors , 2012 .

[20]  Sabu Thomas,et al.  Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: Processing and mechanical/thermal properties , 2012 .

[21]  Kwon Taek Lim,et al.  Preparation and properties of ethylene propylene diene rubber/multi walled carbon nanotube composites for strain sensitive materials , 2011 .

[22]  Xiaoming Tao,et al.  High stretchable MWNTs/polyurethane conductive nanocomposites , 2011 .

[23]  S. Shang,et al.  Crystallization behavior of poly(trimethylene terephthalate)-poly (ethylene glycol) segmented copolyesters/multi-walled carbon nanotube nanocomposites , 2010 .

[24]  Jee Young Lim,et al.  Reinforcing rubber with carbon nanotubes , 2010 .

[25]  N. A. Siddiqui,et al.  DISPERSION AND FUNCTIONALIZATION OF CARBON NANOTUBES FOR POLYMER-BASED NANOCOMPOSITES: A REVIEW , 2010 .

[26]  S. Abd-El-Messieh,et al.  Study of Electrical, Mechanical, and Nanoscale Free-Volume Properties of NBR and EPDM Rubber Reinforced by Bentonite or Kaolin , 2009 .

[27]  W. Zhou,et al.  Investigation of interfacial interaction and structural transition for epoxy/nanotube composites by positron annihilation lifetime spectroscopy , 2009 .

[28]  W. Zhong,et al.  Curing kinetics and mechanical behavior of natural rubber reinforced with pretreated carbon nanotubes , 2008 .

[29]  M. Saboungi,et al.  Improving reinforcement of natural rubber by networking of activated carbon nanotubes , 2008 .

[30]  Xiaoping Yang,et al.  Processing and Material Characteristics of a Carbon‐Nanotube‐Reinforced Natural Rubber , 2007 .

[31]  Malcolm L. H. Green,et al.  Quantitative assessment of carbon nanotube dispersions by Raman spectroscopy , 2007 .

[32]  Jean-Luc Bruneel,et al.  Investigations on natural rubber filled with multiwall carbon nanotubes , 2007 .

[33]  T. Chuah,et al.  Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber , 2006 .

[34]  E. Girgis,et al.  Nickel and iron nano-particles in natural rubber composites , 2006 .

[35]  Chang Hyo Kim,et al.  Positron annihilation spectroscopy of polyacrylonitrile-based carbon fibers embedded with multi-wall carbon nanotubes , 2006 .

[36]  K. Jacob,et al.  Natural rubber nanocomposites with SiC nanoparticles and carbon nanotubes , 2006 .

[37]  Chris Dotremont,et al.  Free volume and interstitial mesopores in silica filled poly(I-trimethylsilyl-l-propyne) nanocomposites , 2005 .

[38]  Riichiro Saito,et al.  Raman spectroscopy of carbon nanotubes , 2005 .

[39]  Liqun Zhang,et al.  Free Volume of Montmorillonite/Styrene-Butadiene Rubber Nanocomposites Estimated by Positron Annihilation Lifetime Spectroscopy , 2004 .

[40]  Liqun Zhang,et al.  Modeling Young’s modulus of rubber–clay nanocomposites using composite theories , 2004 .

[41]  J. Kenny,et al.  Dynamic mechanical and Raman spectroscopy studies on interaction between single‐walled carbon nanotubes and natural rubber , 2004 .

[42]  Shao-jie Wang,et al.  The Microstructure of EPOXY-Layered Silicate Nanocomposite Studied by Positron Annihilation , 2004 .

[43]  C. Quarles,et al.  Temperature dependence of the lifetime spectrum of rubber-carbon black composites , 2003 .

[44]  T. D. Fornes,et al.  Modeling properties of nylon 6/clay nanocomposites using composite theories , 2003 .

[45]  R. Simha,et al.  Pressure−Volume−Temperature Dependence of Poly-ε-caprolactam/Clay Nanocomposites , 2003 .

[46]  Zhang Zhicheng,et al.  Study of the size and numerical concentration of the free volume of carbon filled HDPE composites by the positron annihilation method , 2002 .

[47]  G. Beaucage,et al.  Rational design of reinforced rubber , 2002 .

[48]  Jean L. Leblanc,et al.  Rubber–filler interactions and rheological properties in filled compounds , 2002 .

[49]  M. Semaan,et al.  Doppler broadening spectroscopy of carbon black and carbon black-filled rubbers , 2001 .

[50]  A. Yee,et al.  Determination of Pore Size in Mesoporous Thin Films from the Annihilation Lifetime of Positronium , 2001 .

[51]  Rao,et al.  Polarized raman study of aligned multiwalled carbon nanotubes , 2000, Physical review letters.

[52]  R. Pethrick Positron annihilation : A probe for nanoscale voids and free volume ? , 1997 .

[53]  Risto M. Nieminen,et al.  Theory of Positrons in Solids and on Solid Surfaces , 1994 .

[54]  S. Ahmed,et al.  A review of particulate reinforcement theories for polymer composites , 1990 .

[55]  A. Voet Reinforcement of elastomers by fillers: Review of period 1967–1976 , 1980 .

[56]  M. P. Wagner Reinforcing Silicas and Silicates , 1976 .

[57]  E. M. Dannenberg,et al.  The Effects of Surface Chemical Interactions on the Properties of Filler-Reinforced Rubbers , 1975 .

[58]  J. Halpin Stiffness and Expansion Estimates for Oriented Short Fiber Composites , 1969 .