Detection of viable oocysts of Cryptosporidium parvum following nucleic acid sequence based amplification.

A reliable method using nucleic acid sequence based amplification (NASBA) with subsequent electrochemiluminescent detection for the specific and sensitive detection of viable oocysts of Cryptosporidium parvum in environmental samples was developed. The target molecule was a 121-nt sequence from the C. parvum heat shock protein hsp70 mRNA. Oocysts of C. parvum were isolated from environmental water via vortex flow filtration and immunomagnetic separation. A brief heat shock was applied to the oocysts and the nucleic acid purified using an optimized very simple but efficient nucleic acid extraction method. The nucleic acid was amplified in a water bath for 60-90 min with NASBA, an isothermal technique that specifically amplifies RNA molecules. Amplified RNA was hybridized with specific DNA probes and quantified with an electrochemiluminescence (ECL) detection system. We optimized the nucleic acid extraction and purification, the NASBA reaction, amplification, and detection probes. We were able to amplify and detect as few as 10 mRNA molecules. The NASBA primers as well as the ECL probes were highly specific for C. parvum in buffer and in environmental samples. Our detection limit was approximately 5 viable oocysts/sample for the assay procedure, including nucleic acid extraction, NASBA, and ECL detection. Nonviable oocysts were not detected.