Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal

Femtosecond modelocked lasers with multi-gigahertz pulse repetition rates are attractive sources for all applications that require individually resolvable frequency comb lines or high sampling rates. However, the modelocked laser architectures demonstrated so far have several issues, including the need for single-mode pump lasers, limited output power, Q-switching instabilities and challenging cavity geometries. Here, we introduce a technique that solves these issues. In a two-dimensionally patterned quasi-phase-matching (QPM) device, we create a large, low-loss self-defocusing nonlinearity, which simultaneously provides SESAM-assisted soliton modelocking in the normal dispersion regime and suppresses Q-switching induced damage. We demonstrate femtosecond passive modelocking at 10-GHz pulse repetition rates from a simple straight laser cavity, directly pumped by a low-cost highly spatially multimode pump diode. The 10.6-GHz Yb:CaGdAlO4 (Yb:CALGO) laser delivers 166-fs pulses at 1.2 W of average output power. This enables a new class of femtosecond modelocked diode-pumped solid-state lasers with repetition rates at 10 GHz and beyond.Ultrafast lasers with multi-gigahertz repetition rates are desirable for applications requiring high sampling rates or resolvable frequency comb lines. Here, Mayer et al. use cascading of quadratic nonlinearities to passively modelock a femtosecond solid-state laser at a repetition rate of 10 GHz.

[1]  Ady Arie,et al.  Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3 , 2008 .

[2]  V. Pašiškevičius,et al.  Generation of 2.8 ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP. , 2005, Optics express.

[3]  A. Klenner,et al.  Femtosecond mode locking based on adiabatic excitation of quadratic solitons , 2015 .

[4]  Alexander Klenner,et al.  All-optical Q-switching limiter for high-power gigahertz modelocked diode-pumped solid-state lasers. , 2015, Optics express.

[5]  Michal Lipson,et al.  Offset-Free Gigahertz Midinfrared Frequency Comb Based on Optical Parametric Amplification in a Periodically Poled Lithium Niobate Waveguide , 2016 .

[6]  J. Kono Spintronics: Coherent terahertz control , 2011 .

[7]  P. Plavchan,et al.  Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy , 2016, Nature Communications.

[8]  M. Fejer,et al.  Parametric processes in quasi-phasematching gratings with random duty cycle errors , 2013 .

[9]  Erich P. Ippen,et al.  Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption , 2000 .

[10]  E. Ippen,et al.  Optical arbitrary waveform generation , 2007, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[11]  F. Wise,et al.  Femtosecond Kerr-lens mode locking with negative nonlinear phase shifts. , 1999, Optics letters.

[12]  Scott A. Diddams,et al.  Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb , 2007, Nature.

[13]  J. Herrmann Theory of Kerr-lens mode locking: role of self-focusing and radially varying gain , 1994 .

[14]  O. Gayer,et al.  Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3 , 2008 .

[15]  A. Klenner,et al.  SESAM modelocked Yb:CaGdAlO4 laser in the soliton modelocking regime with positive intracavity dispersion. , 2014, Optics express.

[16]  Ursula Keller,et al.  Optical characterization of semiconductor saturable absorbers , 2004 .

[17]  R. Holzwarth,et al.  Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth , 2009 .

[18]  Theodor W. Hänsch,et al.  Coherent Raman spectro-imaging with laser frequency combs , 2013, Nature.

[19]  R. Byer,et al.  Network of time-multiplexed optical parametric oscillators as a coherent Ising machine , 2014, Nature Photonics.

[20]  David J. Hagan,et al.  χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons , 1996 .

[21]  Yohei Kobayashi,et al.  Direct 15-GHz mode-spacing optical frequency comb with a Kerr-lens mode-locked Yb:Y(2)O(3) ceramic laser. , 2015, Optics express.

[22]  Yaron Silberberg,et al.  Robust adiabatic sum frequency conversion. , 2009, Optics express.

[23]  Jerome Faist,et al.  Dual-comb spectroscopy based on quantum-cascade-laser frequency combs , 2014, Nature Communications.

[24]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[25]  G. Cerullo,et al.  Self-starting mode locking of a cw Nd:YAG laser using cascaded second-order nonlinearities. , 1995, Optics letters.

[26]  Atsushi Takada,et al.  Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser. , 2013, Optics express.

[27]  M. Fejer,et al.  Apodization of chirped quasi-phasematching devices , 2013 .

[28]  Motoichi Ohtsu,et al.  Wide-span optical frequency comb generator for accurate optical frequency difference measurement , 1993 .

[29]  Clifford R. Pollock,et al.  Advanced Solid-state Lasers , 1996 .

[30]  U. Keller,et al.  Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser , 2017, Science.

[31]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[32]  A Bartels,et al.  Passively mode-locked 10 GHz femtosecond Ti:sapphire laser. , 2008, Optics letters.

[33]  Francesca Parmigiani,et al.  26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing , 2011 .

[34]  T. Hänsch,et al.  Laser Frequency Combs for Astronomical Observations , 2008, Science.

[35]  C. Kränkel,et al.  Efficient Yb³⁺:CaGdAlO₄ bulk and femtosecond-laser-written waveguide lasers. , 2015, Optics letters.

[36]  I. Coddington,et al.  Dual-comb spectroscopy. , 2016, Optica.

[37]  Ursula Keller,et al.  Soliton mode-locking with saturable absorbers , 1996 .

[38]  D. Reid,et al.  A decade of astrocombs: recent advances in frequency combs for astronomy. , 2017, Optics express.

[39]  Johan Petit,et al.  Laser emission with low quantum defect in Yb: CaGdAlO4. , 2005, Optics letters.

[40]  F. W. Wise,et al.  Controllable Raman-like nonlinearities from nonstationary, cascaded quadratic processes , 2003, physics/0310036.

[41]  Kazuyuki Aihara,et al.  A fully programmable 100-spin coherent Ising machine with all-to-all connections , 2016, Science.

[42]  Ken-ichi Kawarabayashi,et al.  A coherent Ising machine for 2000-node optimization problems , 2016, Science.

[43]  T. Kippenberg,et al.  Microresonator based optical frequency combs , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[44]  Scott A. Diddams,et al.  Electronic synthesis of light , 2017 .

[45]  Rüdiger Paschotta,et al.  Q-switching stability limits of continuous-wave passive mode locking , 1999 .

[46]  M. Fejer,et al.  Sub-four-cycle laser pulses directly from a high-repetition-rate optical parametric chirped-pulse amplifier at 3.4 μm. , 2013, Optics letters.

[47]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[48]  Ronald Holzwarth,et al.  Ablation-cooled material removal with ultrafast bursts of pulses , 2016, Nature.

[49]  Michal Lipson,et al.  Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides. , 2016, Optics express.

[50]  M. Kirchner,et al.  Generation of ultrastable microwaves via optical frequency division , 2011, 1101.3616.

[51]  U. Keller,et al.  New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers , 2005 .