Coherent modulation up to 100 GBd 16QAM using silicon-organic hybrid (SOH) devices.

We demonstrate the generation of higher-order modulation formats using siliconbased inphase/quadrature (IQ) modulators at symbol rates of up to 100 GBd. Our devices exploit the advantages of silicon-organic hybrid (SOH) integration, which combines siliconon-insulator waveguides with highly efficient organic electro-optic (EO) cladding materials to enable small drive voltages and sub-millimeter device lengths. In our experiments, we use an SOH IQ modulator with a π-voltage of 1.6 V to generate 100 GBd 16QAM signals. This is the first time that the 100 GBd mark is reached with an IQ modulator realized on a semiconductor substrate, leading to a single-polarization line rate of 400 Gbit/s. The peak-topeak drive voltages amount to 1.5 Vpp, corresponding to an electrical energy dissipation in the modulator of only 25 fJ/bit. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation,

[1]  Jingdong Luo,et al.  Enhanced temporal stability of a highly efficient guest–host electro-optic polymer through a barrier layer assisted poling process , 2012 .

[2]  Graham T. Reed,et al.  Silicon optical modulators , 2005 .

[3]  Wolfgang Freude,et al.  40 GBd 16QAM Signaling at 160 Gb/s in a Silicon-Organic Hybrid Modulator , 2015, Journal of Lightwave Technology.

[4]  Jingdong Luo,et al.  Achieving excellent electro-optic activity and thermal stability in poled polymers through an expeditious crosslinking process , 2012 .

[5]  Shiyoshi Yokoyama,et al.  Low driving voltage Mach-Zehnder interference modulator constructed from an electro-optic polymer on ultra-thin silicon with a broadband operation. , 2017, Optics express.

[6]  Jie Sun,et al.  Open Foundry Platform for High-performance Electronic-photonic Integration References and Links , 2022 .

[7]  M. Watts,et al.  Low-Voltage, Compact, Depletion-Mode, Silicon Mach–Zehnder Modulator , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[8]  Gregory Raybon,et al.  Silicon In-Phase/Quadrature Modulator With On-Chip Optical Equalizer , 2014, Journal of Lightwave Technology.

[9]  D Zhang,et al.  Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO₂ multilayer slot waveguide modulators. , 2014, Optics express.

[10]  Larry R. Dalton,et al.  Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability , 2008 .

[11]  C. Koos,et al.  Generation of 64 GBd 4ASK signals using a silicon-organic hybrid modulator at 80°C. , 2016, Optics express.

[12]  Wolfgang Freude,et al.  DAC-Less Amplifier-Less Generation and Transmission of QAM Signals Using Sub-Volt Silicon-Organic Hybrid Modulators , 2015, Journal of Lightwave Technology.

[13]  Wolfgang Freude,et al.  Femtojoule electro-optic modulation using a silicon–organic hybrid device , 2015, Light: Science & Applications.

[14]  Shiyoshi Yokoyama,et al.  Efficiently poled electro-optic polymer modulators. , 2016, Optics express.

[15]  Peter Günter,et al.  Electro-optic effects in molecular crystals , 1993 .

[16]  Florian Merget,et al.  Low V(π) Silicon photonics modulators with highly linear epitaxially grown phase shifters. , 2015, Optics express.

[17]  Wolfgang Freude,et al.  High-Speed, Low Drive-Voltage Silicon-Organic Hybrid Modulator Based on a Binary-Chromophore Electro-Optic Material , 2014, Journal of Lightwave Technology.

[18]  M. Winter,et al.  Error Vector Magnitude as a Performance Measure for Advanced Modulation Formats , 2012, IEEE Photonics Technology Letters.

[19]  Juerg Leuthold,et al.  Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design. , 2017, Optics express.

[20]  Yi Zhang,et al.  Silicon Photonics: The Next Fabless Semiconductor Industry , 2013, IEEE Solid-State Circuits Magazine.

[21]  Larry R Dalton,et al.  Electric field poled organic electro-optic materials: state of the art and future prospects. , 2010, Chemical reviews.

[22]  Jingdong Luo,et al.  Short hybrid polymer/sol-gel silica waveguide switches with high in-device electro-optic coefficient based on photostable chromophore , 2011 .

[23]  D Hillerkuss,et al.  42.7 Gbit/s electro-optic modulator in silicon technology. , 2011, Optics express.

[24]  Wolfgang Freude,et al.  Optical absorption in silicon layers in the presence of charge inversion/accumulation or ion implantation , 2013 .

[25]  C. Koos,et al.  Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) Integration , 2015, Journal of Lightwave Technology.

[26]  Juerg Leuthold,et al.  Harnessing nonlinearities near material absorption resonances for reducing losses in plasmonic modulators , 2017 .

[27]  S. Chandrasekhar,et al.  Monolithic Silicon Photonic Integrated Circuits for Compact 100 $^{+}$Gb/s Coherent Optical Receivers and Transmitters , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  Raluca Dinu,et al.  100 GHz silicon–organic hybrid modulator , 2014, Light: Science & Applications.

[29]  M. Lauermann,et al.  Low-power silicon-organic hybrid (SOH) modulators for advanced modulation formats. , 2014, Optics express.

[30]  Qianfan Xu,et al.  Guiding and confining light in void nanostructure. , 2004, Optics letters.

[31]  Michael Hochberg,et al.  Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator , 2011 .