GolP: An atomistic force‐field to describe the interaction of proteins with Au(111) surfaces in water

A classical atomistic force field to describe the interaction of proteins with gold (111) surfaces in explicit water has been devised. The force field is specifically designed to be easily usable in most common bio‐oriented molecular dynamics codes, such as GROMACS and NAMD. Its parametrization is based on quantum mechanical (density functional theory [DFT] and second order Möller‐Plesset perturbation theory [MP2]) calculations and experimental data on the adsorption of small molecules on gold. In particular, a systematic DFT survey of the interaction between Au(111) and the natural amino acid side chains has been performed to single out chemisorption effects. Van der Waals parameters have been instead fitted to experimental desorption energy data of linear alkanes and were also studied via MP2 calculations. Finally, gold polarization (image charge effects) is taken into account by a recently proposed procedure (Iori, F.; Corni, S. J Comp Chem 2008, 29, 1656). Preliminary validation results of GolP on an independent test set of small molecules show the good performances of the force field. © 2008 Wiley Periodicals, Inc. J Comput Chem 2009

[1]  M. Klein,et al.  Molecular dynamics study of the self-assembled monolayer composed of S(CH2)14CH3 molecules using an all-atoms model , 1994 .

[2]  M. Grunze,et al.  Low-energy structures of a monolayer of octadecanethiol self-assembled on Au(111) , 1994 .

[3]  M. W. Finnis,et al.  The interaction of a point charge with an aluminium (111) surface , 1991 .

[4]  Stanley Brown,et al.  Metal-recognition by repeating polypeptides , 1997, Nature Biotechnology.

[5]  David E. Sanders,et al.  Corrected effective medium method. V. Simplifications for molecular dynamics and Monte Carlo simulations , 1990 .

[6]  Yun Hee Jang,et al.  Structures and properties of self-assembled monolayers of bistable [2]rotaxanes on Au (111) surfaces from molecular dynamics simulations validated with experiment. , 2005, Journal of the American Chemical Society.

[7]  L. Zhigilei,et al.  Explosive Boiling of Water Films Adjacent to Heated Surfaces: A Microscopic Description † , 2001 .

[8]  David E. Bernholdt,et al.  High performance computational chemistry: An overview of NWChem a distributed parallel application , 2000 .

[9]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[10]  Kai-Ming Ho,et al.  First-principles calculation of the equilibrium ground-state properties of transition metals: Applications to Nb and Mo , 1983 .

[11]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[12]  J. Evans,et al.  Molecular characterization of a prokaryotic polypeptide sequence that catalyzes Au crystal formation , 2004 .

[13]  A. Depristo,et al.  Theory of chemical bonding based on the atom–homogeneous electron gas system , 1991 .

[14]  F. Zerbetto,et al.  Modeling the Adsorption of Alkanes on an Au(111) Surface , 2003 .

[15]  J. Müller Nature of the short-range interaction between noble gas atoms and metal surfaces , 2007 .

[16]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[17]  M. Klein,et al.  Molecular dynamics investigations of self-assembled monolayers , 1991 .

[18]  K. Schulten,et al.  Genetically engineered gold-binding polypeptides: structure prediction and molecular dynamics , 2002, Journal of biomaterials science. Polymer edition.

[19]  F. Baneyx,et al.  MATERIALS ASSEMBLY AND FORMATION USING ENGINEERED POLYPEPTIDES , 2004 .

[20]  K. Schulten,et al.  Molecular biomimetics: nanotechnology through biology , 2003, Nature materials.

[21]  A. Goldstein,et al.  Computer Simulation of Protein Adsorption to a Material Surface in Aqueous Solution: Biomaterials Modeling of a Ternary System , 2004 .

[22]  A. W. Overhauser,et al.  Theory of the Dielectric Constants of Alkali Halide Crystals , 1958 .

[23]  F. Zerbetto,et al.  Modeling the stability and the motion of DNA nucleobases on the gold surface. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[24]  E. Spohr Ion adsorption on metal surfaces. The role of water-metal interactions , 1995 .

[25]  Barbara J. Garrison,et al.  Diffusion of a Butanethiolate Molecule on a Au{111} Surface , 1997 .

[26]  Fabio Ganazzoli,et al.  Simulation study of the interaction of some albumin subdomains with a flat graphite surface , 2003 .

[27]  J. Ilja Siepmann,et al.  Influence of surface topology and electrostatic potential on water/electrode systems , 1995 .

[28]  Stefano Corni,et al.  Unraveling the Interaction between Histidine Side Chain and the Au(111) Surface : A DFT Study , 2008 .

[29]  W. A. Goodard,et al.  Atomistic Structure for Self-Assembled Monolayers of Alkanethiols on Au(111) Surfaces , 1996 .

[30]  Susanna Monti,et al.  RAD16II β-Sheet Filaments onto Titanium Dioxide: Dynamics and Adsorption Properties , 2007 .

[31]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[32]  Kurt Kremer,et al.  Dual-scale modeling of benzene adsorption onto Ni(111) and Au(111) surfaces in explicit water. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[33]  G. Scoles,et al.  Energetics and Kinetics of the Physisorption of Hydrocarbons on Au(111) , 1998 .

[34]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[35]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[36]  R. Miron,et al.  Molecular simulation of temperature-programmed desorption , 2007 .

[37]  Michele Parrinello,et al.  Simulation of gold in the glue model , 1988 .

[38]  Priya Vashishta,et al.  Large-scale molecular dynamics simulations of alkanethiol self-assembled monolayers. , 2004, The Journal of chemical physics.

[39]  Rosa Di Felice,et al.  Electronic coupling between azurin and gold at different protein/substrate orientations. , 2007, Small.

[40]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[41]  Tjerk P. Straatsma,et al.  NWChem: Exploiting parallelism in molecular simulations , 2000 .

[42]  P. Weiss,et al.  Benzene on Au[111] at 4 K: monolayer growth and tip-induced molecular cascades. , 2004, Journal of the American Chemical Society.

[43]  Michael L. Klein,et al.  Simulation of a monolayer of alkyl thiol chains , 1989 .

[44]  Vincenzo Carravetta,et al.  Peptide-TiO2 surface interaction in solution by ab initio and molecular dynamics simulations. , 2006, The journal of physical chemistry. B.

[45]  S. Brown,et al.  Engineered iron oxide-adhesion mutants of the Escherichia coli phage lambda receptor. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Stefano Corni,et al.  Including image charge effects in the molecular dynamics simulations of molecules on metal surfaces , 2008, J. Comput. Chem..

[47]  S. Piana,et al.  The nature of the adsorption of nucleobases on the gold [111] surface. , 2006, The journal of physical chemistry. B.

[48]  C. L. Kelchner,et al.  Construction and evaluation of embedding functions , 1994 .

[49]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[50]  Benoît Roux,et al.  Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm , 2003 .

[51]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[52]  Annabella Selloni,et al.  Adsorption modes of cysteine on Au(111): thiolate, amino-thiolate, disulfide. , 2004, The Journal of chemical physics.

[53]  B. Koel,et al.  Probing the reactivity of C6-hydrocarbons on Au surfaces: cyclohexane, cyclohexyl and cyclohexene on Au(1 1 1) , 2002 .

[54]  A. Michaelides,et al.  General model for water monomer adsorption on close-packed transition and noble metal surfaces. , 2003, Physical review letters.

[55]  Jeffrey J. Gray,et al.  Structure prediction of protein-solid surface interactions reveals a molecular recognition motif of statherin for hydroxyapatite. , 2007, Journal of the American Chemical Society.

[56]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[57]  M. Biggs,et al.  Study of conformational switching in polyalanine at solid surfaces using molecular simulation , 2007 .

[58]  Bruce A. Parkinson,et al.  Orbital Alignment and Morphology of Pentacene Deposited on Au(111) and SnS2 Studied Using Photoemission Spectroscopy , 2003 .

[59]  Kenneth J. Tupper,et al.  Compression-induced structural transition in a self-assembled monolayer , 1994 .

[60]  A. Ulman,et al.  Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers , 1993 .

[61]  M. Scheffler,et al.  The interaction of a point charge with a metal surface: theory and calculations for (111), (100) and (110) aluminium surfaces , 1995 .

[62]  Paul F. Barbara,et al.  Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly , 2000, Nature.

[63]  Bruce E. Koel,et al.  Identification of adsorbed phenyl (C6H5) groups on metal surfaces: Electron-induced dissociation of benzene on Au(111) , 2001 .

[64]  W. Knoll,et al.  Superstructures of cyclodextrin derivatives on Au(111): A combined random planting molecular dynamics approach , 1997 .

[65]  N. Hush,et al.  Adsorption of ammonia on the gold (111) surface , 2002 .

[66]  K. Uvdal,et al.  Ground state and phase transitions in a system of arg-cysteamines self-assembled on a Au(111) crystal surface. , 2004, The Journal of chemical physics.

[67]  J. Garrido,et al.  Peptide adsorption on a hydrophobic surface results from an interplay of solvation, surface, and intrapeptide forces , 2008, Proceedings of the National Academy of Sciences.

[68]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[69]  S. Cannistraro,et al.  MD simulation of a plastocyanin mutant adsorbed onto a gold surface. , 2003, Biophysical chemistry.

[70]  W. Goddard,et al.  Molecular simulation study of the c(4×2) superlattice structure of alkanethiol self-assembled monolayers on Au(111) , 2002 .

[71]  F. Zerbetto,et al.  Adsorption of Organic Molecules on Gold Electrodes , 2007 .

[72]  M. Ferrario,et al.  Potential energy surface for rare gases adsorbed on Cu(111): parameterization of the gas/metal interaction potential , 2007 .

[73]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[74]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[75]  Arrigo Calzolari,et al.  Mixing of electronic states in pentacene adsorption on copper. , 2007, Physical review letters.

[76]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[77]  E. Spohr Computer simulation of the structure of the electrochemical double layer , 1998 .

[78]  B. Koel,et al.  IRAS studies of the orientation of acetone molecules in monolayer and multilayer films on Au(1 1 1) surfaces , 2002 .

[79]  T. R. Walsh,et al.  Atomistic modelling of the interaction between peptides and carbon nanotubes , 2007 .

[80]  M. Sarikaya,et al.  A genetic analysis of crystal growth. , 2000, Journal of molecular biology.

[81]  B. D. Kay,et al.  The influence of adsorbate–absorbate hydrogen bonding in molecular chemisorption: NH3, HF, and H2O on Au(111) , 1989 .