Reachability Analysis of Hybrid Systems Using Support Functions

Dans la conception basee sur des modeles on construit un modele mathematique du systeme que l'on utilise pour concevoir le systeme de sorte qu'il presente les proprietes souhaitees. Pour les systemes de surete critique, il peut etre d'une importance capitale de verifier ces proprietes de surete sur le modele, par exemple, pour tenir compte des variations des parametres. Le calcul d'un nombre fini de comportements du systeme par le biais de simulation ne suffit pas a garantir des proprietes de securite. Avec une analyse d'atteignabilite on peut calculer une couverture de tous les comportements possibles du systeme, possiblement infinis. Cette analyse peut prendre en compte de non-determinisme dans le modele et peut garantir des proprietes de securite. Les systemes d'interet presentent souvent a la fois un comportement continu et discret et de tels systemes sont appeles systemes hybrides. Le calcul d'atteignabilite est considere comme difficile pour les systemes continus et hybrides. Ce n'est que recemment que des methodes pour le calcul d'accessibilite ont ete developpees qui peuvent etre mis a l'echelle. Ils sont bases sur des representations implicites d'ensembles continus a l'aide du concepte mathematique de la fonction de support. Dans cette these, nous developpons un outil extensible appele SpaceEx pour le calcul d'atteignabilite des systemes hybrides. Deux algorithmes d'atteignabilite ont ete mis en œuvre dans SpaceEx, l'un base sur l'outil PHAVer pour les automates lineaires hybrides et l'autre base sur les fonctions de support pour les dynamiques affines par morceaux. L'algorithme de fonction support a ete mis au point et sa mise a l'echelle a ete ameliore en basculant entre differentes representations d'ensembles continus. Nous proposons un algorithme de calcul d'image des transition discretes ameliore qui reduit l'erreur de sur-approximation et nous illustrons sa precision et son efficacite avec plusieurs etudes de cas.

[1]  Hans Raj Tiwary On the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes , 2008, Discret. Comput. Geom..

[2]  Andrei Alexandrescu,et al.  Modern C++ design: generic programming and design patterns applied , 2001 .

[3]  Wang Yi,et al.  UPPAAL - a Tool Suite for Automatic Verification of Real-Time Systems , 1996, Hybrid Systems.

[4]  George B. Dantzig,et al.  Linear Programming 1: Introduction , 1997 .

[5]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[6]  Goran Frehse,et al.  Design Principles for an Extendable Verification Tool for Hybrid Systems , 2009, ADHS.

[7]  G. Rote,et al.  Sandwich approximation of univariate convex functions with an application to separable convex programming , 1991 .

[8]  Wang Yi,et al.  A Tool Architecture for the Next Generation of Uppaal , 2002, 10th Anniversary Colloquium of UNU/IIST.

[9]  A. Girard Analyse Algorithmique des Systèmes Hybrides , 2004 .

[10]  B. Krogh,et al.  Computing polyhedral approximations to flow pipes for dynamic systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[11]  Stephan Merz,et al.  Model Checking , 2000 .

[12]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[13]  Java Binding,et al.  GNU Linear Programming Kit , 2011 .

[14]  Rob A. Rutenbar,et al.  Verifying analog oscillator circuits using forward/backward abstraction refinement , 2006, Proceedings of the Design Automation & Test in Europe Conference.

[15]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[16]  Gerard J. Holzmann,et al.  The Model Checker SPIN , 1997, IEEE Trans. Software Eng..

[17]  Pravin Varaiya,et al.  What's decidable about hybrid automata? , 1995, STOC '95.

[18]  Thomas A. Henzinger,et al.  HYTECH: a model checker for hybrid systems , 1997, International Journal on Software Tools for Technology Transfer.

[19]  Antoine Girard,et al.  Reachability Analysis of Hybrid Systems Using Support Functions , 2009, CAV.

[20]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[21]  Antoine Girard,et al.  Reachability Analysis of Nonlinear Systems Using Conservative Approximation , 2003, HSCC.

[22]  D. Griffel Linear programming 2: Theory and extensions , by G. B. Dantzig and M. N. Thapa. Pp. 408. £50.00. 2003 ISBN 0 387 00834 9 (Springer). , 2004, The Mathematical Gazette.

[23]  Ansgar Fehnker,et al.  Benchmarks for Hybrid Systems Verification , 2004, HSCC.

[24]  Satoshi Yamane,et al.  The symbolic model-checking for real-time systems , 1996, Proceedings of the Eighth Euromicro Workshop on Real-Time Systems.

[25]  Stavros Tripakis,et al.  Kronos: A Model-Checking Tool for Real-Time Systems , 1998, CAV.

[26]  Ian M. Mitchell Comparing Forward and Backward Reachability as Tools for Safety Analysis , 2007, HSCC.

[27]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[28]  Alberto Bemporad,et al.  Hybrid Systems: Computation and Control, 10th International Workshop, HSCC 2007, Pisa, Italy, April 3-5, 2007, Proceedings , 2007, HSCC.

[29]  Antoine Girard,et al.  SpaceEx: Scalable Verification of Hybrid Systems , 2011, CAV.

[30]  Eugene Asarin,et al.  The d/dt Tool for Verification of Hybrid Systems , 2002, CAV.

[31]  Günter Rote,et al.  The convergence rate of the sandwich algorithm for approximating convex functions , 1992, Computing.

[32]  Goran Frehse,et al.  PHAVer: algorithmic verification of hybrid systems past HyTech , 2005, International Journal on Software Tools for Technology Transfer.

[33]  Roberto Bagnara,et al.  The Parma Polyhedra Library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems , 2006, Sci. Comput. Program..

[34]  Antoine Girard,et al.  Reachability of Uncertain Linear Systems Using Zonotopes , 2005, HSCC.

[35]  Colas Le Guernic Reachability Analysis of Hybrid Systems with Linear Continuous Dynamics. (Calcul d'Atteignabilité des Systèmes Hybrides à Partie Continue Linéaire) , 2009 .

[36]  Michael Joswig,et al.  Polymake: an approach to modular software design in computational geometry , 2001, SCG '01.

[37]  Henny B. Sipma,et al.  Scalable Analysis of Linear Systems Using Mathematical Programming , 2005, VMCAI.

[38]  Ailsa H. Land,et al.  An Automatic Method of Solving Discrete Programming Problems , 1960 .

[39]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[40]  Edmund M. Clarke,et al.  Counterexample-guided abstraction refinement , 2003, 10th International Symposium on Temporal Representation and Reasoning, 2003 and Fourth International Conference on Temporal Logic. Proceedings..

[41]  K. Vinod Kumar,et al.  Support Function Representation of Convex Bodies, Its Application in Geometric Computing, and Some Related Representations , 1998, Comput. Vis. Image Underst..

[42]  Antoine Girard,et al.  Efficient Computation of Reachable Sets of Linear Time-Invariant Systems with Inputs , 2006, HSCC.

[43]  Roberto Bagnara,et al.  Possibly Not Closed Convex Polyhedra and the Parma Polyhedra Library , 2002, SAS.

[44]  Sriram Sankaranarayanan,et al.  Symbolic Model Checking of Hybrid Systems Using Template Polyhedra , 2008, TACAS.

[45]  A. Girard,et al.  Efficient reachability analysis for linear systems using support functions , 2008 .

[46]  Sumit Kumar Jha,et al.  A Counterexample-Guided Approach to Parameter Synthesis for Linear Hybrid Automata , 2008, HSCC.

[47]  M. Livio The Golden Ratio: The Story of Phi, the World's Most Astonishing Number , 2002 .

[48]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[49]  Bjarne Stroustrup,et al.  The C++ Programming Language, First Edition , 1986 .

[50]  Bjarne Stroustrup,et al.  C++ Programming Language , 1986, IEEE Softw..