A Unified Definition and Computation of Laplacian Spectral Distances

Abstract Laplacian spectral kernels and distances (e.g., biharmonic, heat diffusion, wave kernel distances) are easily defined through a filtering of the Laplacian eigenpairs. They play a central role in several applications, such as dimensionality reduction with spectral embeddings, diffusion geometry, image smoothing, geometric characterisations and embeddings of graphs. Extending the results recently derived in the discrete setting [38,39] to the continuous case, we propose a novel definition of the Laplacian spectral kernels and distances, whose approximation requires the solution of a set of inhomogeneous Laplace equations. Their discrete counterparts are equivalent to a set of sparse, symmetric, and well-conditioned linear systems, which are efficiently solved with iterative methods. Finally, we discuss the optimality of the Laplacian spectrum for the approximation of the spectral kernels, the relation between the spectral and Green kernels, and the stability of the spectral distances with respect to the evaluation of the Laplacian spectrum and to multiple Laplacian eigenvalues.

[1]  F. Mémoli,et al.  A spectral notion of Gromov–Wasserstein distance and related methods , 2011 .

[2]  Keenan Crane,et al.  Geodesics in heat: A new approach to computing distance based on heat flow , 2012, TOGS.

[3]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[4]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[5]  Alexander M. Bronstein,et al.  Shape Recognition with Spectral Distances , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Ron Kimmel,et al.  On the Optimality of Shape and Data Representation in the Spectral Domain , 2014, SIAM J. Imaging Sci..

[7]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[8]  Guillermo Sapiro,et al.  A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..

[9]  B. Prabhakaran,et al.  Point-Based Manifold Harmonics , 2012, IEEE Transactions on Visualization and Computer Graphics.

[10]  Daniel Cremers,et al.  Partial Functional Correspondence , 2017 .

[11]  Edwin R. Hancock,et al.  Spectral embedding of graphs , 2003, Pattern Recognit..

[12]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[13]  Ronald R. Coifman,et al.  Data Fusion and Multicue Data Matching by Diffusion Maps , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Marc Alexa,et al.  Eurographics Symposium on Geometry Processing 2015 Perfect Laplacians for Polygon Meshes , 2022 .

[15]  Raif M. Rustamov,et al.  Multiscale Biharmonic Kernels , 2011, Comput. Graph. Forum.

[16]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Mahantapas Kundu,et al.  The journey of graph kernels through two decades , 2018, Comput. Sci. Rev..

[18]  Giuseppe Patanè,et al.  Laplacian spectral distances and kernels on 3D shapes , 2014, Pattern Recognit. Lett..

[19]  P. Bérard,et al.  Embedding Riemannian manifolds by their heat kernel , 1994 .

[20]  Thomas A. Funkhouser,et al.  Biharmonic distance , 2010, TOGS.

[21]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[22]  Edwin R. Hancock,et al.  Geometric characterization and clustering of graphs using heat kernel embeddings , 2010, Image Vis. Comput..

[23]  Jarek Rossignac,et al.  GeoFilter: Geometric Selection of Mesh Filter Parameters , 2005, Comput. Graph. Forum.

[24]  Karthik Ramani,et al.  Multi‐Scale Kernels Using Random Walks , 2014, Comput. Graph. Forum.

[25]  Jinxiang Dong,et al.  Gradient field based inhomogeneous volumetric mesh deformation for maxillofacial surgery simulation , 2009, Comput. Graph..

[26]  Hong Qin,et al.  Continuous and discrete Mexican hat wavelet transforms on manifolds , 2012, Graph. Model..

[27]  Giuseppe Patanè,et al.  STAR ‐ Laplacian Spectral Kernels and Distances for Geometry Processing and Shape Analysis , 2016, Comput. Graph. Forum.

[28]  Pierre Vandergheynst,et al.  Wavelets on Graphs via Spectral Graph Theory , 2009, ArXiv.

[29]  Alexander M. Bronstein,et al.  Deformable Shape Retrieval by Learning Diffusion Kernels , 2011, SSVM.

[30]  Edwin R. Hancock,et al.  Heat Kernel Embeddings, Differential Geometry and Graph Structure , 2015, Axioms.

[31]  Giuseppe Patanè,et al.  Accurate and Efficient Computation of Laplacian Spectral Distances and Kernels , 2017, Comput. Graph. Forum.

[32]  Santiago V. Lombeyda,et al.  Discrete multiscale vector field decomposition , 2003, ACM Trans. Graph..

[33]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[34]  Luiz Velho,et al.  A Hierarchical Segmentation of Articulated Bodies , 2008, Comput. Graph. Forum.

[35]  A. Singer From graph to manifold Laplacian: The convergence rate , 2006 .

[36]  Giuseppe Patanè,et al.  wFEM heat kernel: Discretization and applications to shape analysis and retrieval , 2013, Comput. Aided Geom. Des..

[37]  D. Spielman,et al.  Spectral partitioning works: planar graphs and finite element meshes , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[38]  Rasmus Larsen,et al.  Shape Analysis Using the Auto Diffusion Function , 2009 .

[39]  Guillermo Sapiro,et al.  Three-dimensional point cloud recognition via distributions of geometric distances , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[40]  S. Rosenberg The Laplacian on a Riemannian Manifold: The Laplacian on a Riemannian Manifold , 1997 .

[41]  Abdolreza Mirzaei,et al.  Diffusion wavelet embedding: A multi-resolution approach for graph embedding in vector space , 2018, Pattern Recognit..

[42]  Peter Borwein,et al.  Scientific computation on mathematical problems and conjectures , 1991 .

[43]  Pierre Vandergheynst,et al.  Learning class‐specific descriptors for deformable shapes using localized spectral convolutional networks , 2015, SGP '15.

[44]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[45]  Daniel Cremers,et al.  Anisotropic Diffusion Descriptors , 2016, Comput. Graph. Forum.

[46]  Daniel Cremers,et al.  Consistent Partial Matching of Shape Collections via Sparse Modeling , 2017, Comput. Graph. Forum.

[47]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[48]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[49]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[50]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[51]  Jun Zhou,et al.  Adaptive hash retrieval with kernel based similarity , 2018, Pattern Recognit..

[52]  Marc Alexa,et al.  Discrete Laplacians on general polygonal meshes , 2011, ACM Trans. Graph..

[53]  R. Varga Scientific Computations on Mathematical Problems and Conjectures , 1987 .

[54]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[55]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.