Polarization of the nucleic acid bases in aqueous solution

Abstract We present calculations of the absolute free energy of solvation of five nucleic acid bases and five methylated nucleic acid bases using a recently developed local-field SCF procedure in which the electronic structure and geometry are both optimized in the presence of solvent. The calculated solvation free energies are increased 23%–24% by the aqueous-phase relaxation.

[1]  Arieh Ben-Naim,et al.  Solvation thermodynamics of nonionic solutes , 1984 .

[2]  C. Cramer,et al.  An SCF Solvation Model for the Hydrophobic Effect and Absolute Free Energies of Aqueous Solvation , 1992, Science.

[3]  Peter A. Kollman,et al.  Ion solvation in polarizable water: molecular dynamics simulations , 1991 .

[4]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[5]  L. Dang Development of nonadditive intermolecular potentials using molecular dynamics: Solvation of Li+ and F− ions in polarizable water , 1992 .

[6]  Robert B. Hermann,et al.  Theory of hydrophobic bonding. II. Correlation of hydrocarbon solubility in water with solvent cavity surface area , 1972 .

[7]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[8]  Alan R. Katritzky,et al.  Quantitative predictions of tautomeric equilibria for 2-, 3-, and 4-substituted pyridines in both the gas phase and aqueous solution: combination of AM1 with reaction field theory , 1989 .

[9]  S. Yomosa On the Basic Equation for the Equilibrium Electronic States in Polar Solvents —Broken Symmetry— , 1978 .

[10]  A. Wallqvist Incorporating intramolecular degrees of freedom in simulations of polarizable liquid water , 1990 .

[11]  Anders Wallqvist,et al.  A molecular dynamics study of polarizable water , 1989 .

[12]  M. Drummond Quantum calculations on proteins: the incorporation of environmental effects in quantum chemistry. , 1986, Progress in biophysics and molecular biology.

[13]  István Mayer,et al.  Charge, bond order and valence in the AB initio SCF theory , 1983 .

[14]  A. D. McLachlan,et al.  Solvation energy in protein folding and binding , 1986, Nature.

[15]  Kenji Morihashi,et al.  MNDO-effective charge model study of solvent effect on the potential energy surface of the SN2 reaction , 1989 .

[16]  James Andrew McCammon,et al.  Molecular Dynamics Simulations with Interaction Potentials Including Polarization Development of a Noniterative Method and Application to Water , 1990 .

[17]  S Neidle,et al.  Molecular dynamics simulation of the DNA triplex d(TC)5.d(GA)5.d(C+T)5. , 1992, Journal of molecular biology.

[18]  M. Karplus,et al.  A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations , 1990 .

[19]  Orlando Tapia,et al.  Self-consistent reaction field theory of solvent effects , 1975 .

[20]  J. A. C. Rullmann,et al.  A polarizable water model for calculation of hydration energies , 1988 .

[21]  L. Perera,et al.  Charge localization in negative ion dynamics: Effect on caging of Br−2 in Arn and (CO2)n clusters , 1989 .

[22]  Jacopo Tomasi,et al.  Theoretical chemistry in solution. Some results and perspectives of the continuum methods and in particular of the polarizable continuum model , 1991 .

[23]  Alan R. Katritzky,et al.  AM1 calculations of reaction field effects on the tautomeric equilibria of nucleic acid pyrimidine and purine bases and their 1-methyl analogs , 1991 .

[24]  Daniel Rinaldi,et al.  Polarisabilites moléculaires et effet diélectrique de milieu à l'état liquide. Étude théorique de la molécule d'eau et de ses diméres , 1973 .

[25]  J. Mccammon,et al.  Dynamics of Proteins and Nucleic Acids , 2018 .

[26]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[27]  J. Rullmann,et al.  The active site of papain. All-atom study of interactions with protein matrix and solvent. , 1989, Journal of molecular biology.

[28]  A. Leach,et al.  Theoretical investigations of novel nucleic acid bases , 1992 .

[29]  K. Wiberg,et al.  Hartree–Fock second derivatives and electric field properties in a solvent reaction field: Theory and application , 1991 .

[30]  Arieh Warshel,et al.  Microscopic models for quantum mechanical calculations of chemical processes in solutions: LD/AMPAC and SCAAS/AMPAC calculations of solvation energies , 1992 .

[31]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[32]  O. Tapia On the theory of solvent-effect representation , 1991 .

[33]  Ignacio Tinoco,et al.  Dna Dynamics in Aqueous Solution: Opening the Double Helix , 1990, Int. J. High Perform. Comput. Appl..

[34]  W. G. Laidlaw,et al.  On the application of the variational principle to a type of nonlinear ’’Schrödinger equation’’ , 1979 .

[35]  C. Cramer,et al.  General parameterized SCF model for free energies of solvation in aqueous solution , 1991 .

[36]  T. Steinke,et al.  The solvent effect on the electronic nature of 1,3-dipoles: an ab initio SCRF study , 1989 .

[37]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[38]  O. Tapia,et al.  Generalized self-consistent reaction field theory in a multicenter-multipole ab-initio LCGO framework. I. Electronic properties of the water molecule in a Monte Carlo sample of liquid water molecules studied with standard basis sets , 1990 .

[39]  Lennart Nilsson,et al.  Empirical energy functions for energy minimization and dynamics of nucleic acids , 1986 .

[40]  W. C. Still,et al.  Semianalytical treatment of solvation for molecular mechanics and dynamics , 1990 .

[41]  Michiel Sprik,et al.  A polarizable model for water using distributed charge sites , 1988 .

[42]  V. Staemmler,et al.  CASSCF and CEPA calculations for the photodissociation of hydroazoic acid. 2. Photodissociation into nitrogen and imidogen on the lowest 1A'' surface of hydroazoic acid , 1991 .

[43]  Michiel Sprik,et al.  COMPUTER-SIMULATION OF THE DYNAMICS OF INDUCED POLARIZATION FLUCTUATIONS IN WATER , 1991 .

[44]  Jean-Louis Rivail,et al.  A quantum chemical approach to dielectric solvent effects in molecular liquids , 1976 .

[45]  D. Lévesque,et al.  A theoretical study of a polar-polarizable model for liquid ammonia , 1987 .

[46]  C. E. Dykstra Efficient calculation of electrically based intermolecular potentials of weakly bonded clusters , 1988 .

[47]  C. E. Dykstra Molecular mechanics for weakly interacting assemblies of rare gas atoms and small molecules , 1989 .

[48]  M. Newton Ab initio Hartree‐Fock calculations with inclusion of a polarized dielectric; formalism and application to the ground state hydrated electron , 1973 .

[49]  C. Cramer,et al.  Molecular orbital theory calculations of aqueous solvation effects on chemical equilibria , 1991 .

[50]  M. Berkowitz,et al.  Many-body effects in molecular dynamics simulations of Na +(H2O)n and Cl-(H2O) n clusters , 1991 .

[51]  P. A. Bash,et al.  Free energy calculations by computer simulation. , 1987, Science.

[52]  Omar A. Karim,et al.  Simulation of an anion in water: effect of ion polarizability , 1991 .

[53]  S. Yomosa Charge-Transfer Molecular Compounds in Biological Systems , 1967 .

[54]  R. Constanciel,et al.  Self consistent field theory of solvent effects representation by continuum models: Introduction of desolvation contribution , 1984 .

[55]  Donald G. Truhlar,et al.  Generalized born fragment charge model for solvation effects as a function of reaction coordinate , 1989 .