Theory of Matrix Morphology

The current concept of mathematical morphology (called scalar morphology here) is extended to a matrix morphology formalism. A formal definition of matrix morphology on binary images is followed by a complete pictorial example of a nontrivial application. Binary matrix morphology is extended to gray-scale matrix morphology using a traditional development. General window transforms are expressed in terms of matrices. An application to character recognition is given. >

[1]  S. S. Wilson,et al.  The AIS-5000 Parallel Processor , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Robert M. Lougheed,et al.  The cytocomputer: A practical pipelined image processor , 1980, ISCA '80.

[3]  T. Crimmins,et al.  Image Algebra and Automatic Shape Recognition , 1985, IEEE Transactions on Aerospace and Electronic Systems.

[4]  H. Hadwiger Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .

[5]  G. Matheron Random Sets and Integral Geometry , 1976 .

[6]  Stanley R Sternberg,et al.  Grayscale morphology , 1986 .

[7]  Edward J. Coyle,et al.  Threshold decomposition of multidimensional ranked order operations , 1985 .

[8]  S. S. Wilson,et al.  Vector morphology and iconic neural networks , 1989, IEEE Trans. Syst. Man Cybern..

[9]  Xinhua Zhuang,et al.  Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Stephen S. Wilson Unsupervised training of structuring elements , 1991, Optics & Photonics.

[11]  Edward J. Coyle,et al.  Stack filters , 1986, IEEE Trans. Acoust. Speech Signal Process..

[12]  Petros Maragos A Representation Theory for Morphological Image and Signal Processing , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Petros Maragos,et al.  Morphological filters-Part II: Their relations to median, order-statistic, and stack filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[14]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .