On Conflict-Driven Reasoning

Automated formal methods and automated reasoning are interconnected, as formal methods generate reasoning problems and incorporate reasoning techniques. For example, formal methods tools employ reasoning engines to nd solutions of sets of constraints, or proofs of conjectures. From a reasoning perspective, the expressivity of the logical language is often directly proportional to the di culty of the problem. In propositional logic, Con ict-Driven Clause Learning (CDCL) is one of the key features of state-of-theart satis ability solvers. The idea is to restrict inferences to those needed to explain con icts, and use con icts to prune a backtracking search. A current research direction in automated reasoning is to generalize this notion of con ict-driven satis ability to a paradigm of con ict-driven reasoning in rst-order theories for satisability modulo theories and assignments, and even in full rstorder logic for generic automated theorem proving. While this is a promising and exciting lead, it also poses formidable challenges.

[1]  Stephan Schulz,et al.  System Description: E 1.8 , 2013, LPAR.

[2]  Christoph Weidenbach,et al.  NRCL - A Model Building Approach to the Bernays-Schönfinkel Fragment , 2015, FroCos.

[3]  D. Plaisted,et al.  Semantically-Guided Goal-Sensitive Reasoning: Model Representation , 2016, Journal of Automated Reasoning.

[4]  Maria Paola Bonacina,et al.  A model-constructing framework for theory combination , 2016 .

[5]  Greg Nelson,et al.  Combining satisability procedures by equality-sharing , 1984 .

[6]  Mark E. Stickel,et al.  Implementing the Davis–Putnam Method , 2000, Journal of Automated Reasoning.

[7]  Maria Paola Bonacina,et al.  Interpolation Systems for Ground Proofs in Automated Deduction: a Survey , 2015, Journal of Automated Reasoning.

[8]  Armin Biere,et al.  Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads , 2011, Haifa Verification Conference.

[9]  Nikolaj Bjørner,et al.  Engineering DPLL(T) + Saturation , 2008, IJCAR.

[10]  P. Smokowski,et al.  Conflict Resolution , 1989, International Conference on Principles and Practice of Constraint Programming.

[11]  Maria Paola Bonacina,et al.  Satisfiability Modulo Theories and Assignments , 2017, CADE.

[12]  Bruno Dutertre,et al.  A Fast Linear-Arithmetic Solver for DPLL(T) , 2006, CAV.

[13]  Leonardo Mendonça de Moura,et al.  Computation in Real Closed Infinitesimal and Transcendental Extensions of the Rationals , 2013, CADE.

[14]  Maria Paola Bonacina,et al.  On Deciding Satisfiability by Theorem Proving with Speculative Inferences , 2011, Journal of Automated Reasoning.

[15]  Harald Rue,et al.  Lemmas on Demand for Satis ability , 2002 .

[16]  Maria Paola Bonacina,et al.  Rewrite-Based Satisfiability Procedures for Recursive Data Structures , 2007, PDPAR/PaUL@FLoC.

[17]  L. D. Moura Lemmas on Demand for Satisfiability Solvers , 2002 .

[18]  Matthew W. Moskewicz,et al.  Cha : Engineering an e cient SAT solver , 2001, DAC 2001.

[19]  Kenneth L. McMillan,et al.  Generalizing DPLL to Richer Logics , 2009, CAV.

[20]  Cesare Tinelli,et al.  Splitting on Demand in SAT Modulo Theories , 2006, LPAR.

[21]  Bruno Woltzenlogel Paleo,et al.  Scavenger 0.1: A Theorem Prover Based on Conflict Resolution , 2017, CADE.

[22]  Maria Paola Bonacina,et al.  Constraint manipulation in SGGS , 2014 .

[23]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[24]  Maria Paola Bonacina,et al.  On a Rewriting Approach to Satisfiability Procedures: Extension, Combination of Theories and an Experimental Appraisal , 2005, FroCoS.

[25]  Leonardo Mendonça de Moura,et al.  Solving non-linear arithmetic , 2012, ACCA.

[26]  Maria Paola Bonacina,et al.  On Variable-inactivity and Polynomial tau-Satisfiability Procedures , 2008, J. Log. Comput..

[27]  Bruno Woltzenlogel Paleo,et al.  Conflict Resolution: A First-Order Resolution Calculus with Decision Literals and Conflict-Driven Clause Learning , 2017, Journal of Automated Reasoning.

[28]  Maria Paola Bonacina,et al.  Parallel Theorem Proving , 2018, Handbook of Parallel Constraint Reasoning.

[29]  Maria Paola Bonacina,et al.  On Deciding Satisfiability by DPLL(G+T) and Unsound Theorem Proving , 2009, CADE.

[30]  Maria Paola Bonacina,et al.  SGGS Theorem Proving: an Exposition , 2014, PAAR@IJCAR.

[31]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[32]  Zohar Manna,et al.  The calculus of computation - decision procedures with applications to verification , 2007 .

[33]  Clark W. Barrett,et al.  The design and implementation of the model constructing satisfiability calculus , 2013, 2013 Formal Methods in Computer-Aided Design.

[34]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[35]  Giuseppe Scollo,et al.  Dipartimento di Informatica Universit ` a degli Studi di Verona , 2004 .

[36]  Nikolaj Bjørner,et al.  Model-based Theory Combination , 2008, SMT@CAV.

[37]  David L. Dill,et al.  A decision procedure for an extensional theory of arrays , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[38]  Dejan Jovanovic,et al.  Solving Nonlinear Integer Arithmetic with MCSAT , 2017, VMCAI.

[39]  Christoph Weidenbach,et al.  SPASS Version 3.5 , 2009, CADE.

[40]  Leonardo Mendonça de Moura,et al.  A Model-Constructing Satisfiability Calculus , 2013, VMCAI.

[41]  J. P. Marques,et al.  GRASP : A Search Algorithm for Propositional Satisfiability , 1999 .

[42]  Ruzica Piskac,et al.  Deciding Effectively Propositional Logic Using DPLL and Substitution Sets , 2010, Journal of Automated Reasoning.

[43]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[44]  Daniel S. Weld,et al.  The LPSAT Engine & Its Application to Resource Planning , 1999, IJCAI.

[45]  Philipp Rümmer,et al.  Deciding Bit-Vector Formulas with mcSAT , 2016, SAT.

[46]  Joao Marques-Silva,et al.  GRASP: A Search Algorithm for Propositional Satisfiability , 1999, IEEE Trans. Computers.

[47]  Leonardo Mendonça de Moura,et al.  Cutting to the Chase , 2011, Journal of Automated Reasoning.

[48]  Maria Paola Bonacina,et al.  PSATO: a Distributed Propositional Prover and its Application to Quasigroup Problems , 1996, J. Symb. Comput..

[49]  Natarajan Shankar,et al.  Automated deduction for verification , 2009, CSUR.

[50]  Chao Wang,et al.  Deciding Separation Logic Formulae by SAT and Incremental Negative Cycle Elimination , 2005, LPAR.

[51]  Daniel Kroening,et al.  Deciding floating-point logic with systematic abstraction , 2012, 2012 Formal Methods in Computer-Aided Design (FMCAD).

[52]  Maria Paola Bonacina,et al.  New results on rewrite-based satisfiability procedures , 2006, TOCL.

[53]  Amit Goel,et al.  Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL , 2007, FroCoS.

[54]  Maria Paola Bonacina,et al.  Semantically-Guided Goal-Sensitive Reasoning: Inference System and Completeness , 2017, Journal of Automated Reasoning.

[55]  Armin Biere,et al.  Lemmas on demand for the extensional theory of arrays , 2008, SMT '08/BPR '08.

[56]  Scott Cotton Natural Domain SMT: A Preliminary Assessment , 2010, FORMATS.

[57]  Cesare Tinelli,et al.  Solving SAT and SAT Modulo Theories: From an abstract Davis--Putnam--Logemann--Loveland procedure to DPLL(T) , 2006, JACM.

[58]  Andrei Voronkov,et al.  First-Order Theorem Proving and Vampire , 2013, CAV.

[59]  Maria Paola Bonacina,et al.  On theorem proving for program checking: historical perspective and recent developments , 2010, PPDP.

[60]  Greg Nelson,et al.  Simplification by Cooperating Decision Procedures , 1979, TOPL.

[61]  Inês Lynce,et al.  Conflict-Driven Clause Learning SAT Solvers , 2009, Handbook of Satisfiability.