Semiconductor Particles and Arrays for the Photoelectrochemical Utilization of Solar Energy

The principles of the design of integrated chemical systems based on semiconductor materials for the photoelectrochemical utilization of solar energy to drive useful chemical reactions are described. The use of different support materials, such as Nafion and silica, to prepare particulate systems is discussed. Systems with very small (“Q-”) particles are described. Charging of these particles is proposed as an important factor in the determination of particle energetics (optical band gap and potentials of photogenerated electrons and holes). Semiconductor arrays, with a number of junctions in series to provide higher driving potentials, are discussed, and two systems for the photosplitting of water to hydrogen and oxygen are described.

[1]  A. Bard,et al.  Luminescence of mixed ZnS · CdS semiconductor catalysts in Nafion polymer films , 1988 .

[2]  T. Mallouk,et al.  Modeling of Bipolar Semiconductor Photoelectrode Arrays for Electrolytic Processes , 1988 .

[3]  D. Meisel,et al.  Formation of small particles of lead iodide, mercuric iodide, and bismuth iodide layered semiconductors , 1987 .

[4]  A. Bard,et al.  Photochemistry of colloidal semiconducting iron oxide polymorphs , 1987 .

[5]  A. Henglein,et al.  Reactions on colloidal semiconductor particles , 1987 .

[6]  H. Watzke,et al.  Quantum size effects of in situ generated colloidal CdS particles in dioctadecyldimethylammonium chloride surfactant vesicles , 1987 .

[7]  Norman Herron,et al.  Optical properties of CdS and PbS clusters encapsulated in zeolites , 1987 .

[8]  Alan Campion,et al.  Bipolar CdSe/CoS semiconductor photoelectrode arrays for unassisted photolytic water splitting , 1987 .

[9]  A. Bard,et al.  PREPARATION AND ELECTRONIC PROPERTIES OF MONOLAYER TUNGSTEN OXIDE ON SILICA PARTICLES , 1987 .

[10]  A. Henglein,et al.  Photochemistry and radiation chemistry of semiconductor colloids: reaction of the hydrated electron with CdS and non-linear optical effects , 1986 .

[11]  C. Sandroff,et al.  Aggregated microcrystallites: Raman scattering from a new class of disordered solids , 1986 .

[12]  T. Mallouk,et al.  Bipolar TiO2/Pt semiconductor photoelectrodes and multielectrode arrays for unassisted photolytic water splitting , 1986 .

[13]  Louis E. Brus,et al.  Electronic wave functions in semiconductor clusters: experiment and theory , 1986 .

[14]  W. Goddard,et al.  Electron correlation effects in ligand field parameters and other properties of copper(II) fluoride , 1986 .

[15]  James R. White,et al.  Semiconductor Electrodes LVI . Principles of Multijunction Electrodes and Photoelectrosynthesis at Texas Instruments' p/n‐Si Solar Arrays , 1985 .

[16]  Louis E. Brus,et al.  Excited electronic states and optical spectra of ZnS and CdS crystallites in the ≊15 to 50 Å size range: Evolution from molecular to bulk semiconducting properties , 1985 .

[17]  A. Mau,et al.  H/sub 2/ photoproduction by Nafion/CdS/Pt films in H/sub 2/O/S/sup 2 -/ solutions , 1984 .

[18]  A. Bard Photoelectrochemistry and solar energy: progress, promise and problems , 1984 .

[19]  J. K. Thomas,et al.  Photophysical properties of cadmium sulfide in Nafion film , 1984 .

[20]  Y. Pleskov Solar energy conversion in photoelectrochemical cells with semiconductor electrodes , 1984 .

[21]  D. Meissner,et al.  Light-induced generation of hydrogen at CdS-monograin membranes , 1983 .

[22]  A. Bard,et al.  Integrated Chemical Systems:n-Silicon/Silicide/Catalyst Systems , 1983 .

[23]  James R. White,et al.  Electrochemical investigation of the energetics of particulate titanium dioxide photocatalysts. The methyl viologen-acetate system , 1983 .

[24]  James R. White,et al.  Integrated chemical systems: photocatalysis at semiconductors incorporated into polymer (Nafion)/mediator systems , 1983 .

[25]  F. H. Field,et al.  Fast atom bombardment study of glycerol: mass spectra and radiation chemistry , 1982 .

[26]  M. Ward,et al.  Photocurrent enhancement via trapping of photogenerated electrons of titanium dioxide particles , 1982 .

[27]  E. L. Johnson Recent Progress in Photovoltaic/Electrochemical Energy System Application , 1982 .

[28]  M. Graetzel,et al.  Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light , 1981 .

[29]  A. Bard,et al.  Characterization of particulate titanium dioxide photocatalysts by photoelectrophoretic and electrochemical measurements , 1981 .

[30]  M. Graetzel,et al.  Dynamics of light-induced water cleavage in colloidal systems , 1981 .

[31]  A. Heller Conversion of Sunlight into Electrical Power and Photoassisted Electrolysis of Water in Photoelectrochemical Cells , 1981 .

[32]  A. Bard,et al.  Semiconductor Electrodes XXXV . Slurry Electrodes Based on Semiconductor Powder Suspensions , 1981 .

[33]  Bard,et al.  Design of semiconductor photoelectrochemical systems for solar energy conversion. Technical report , 1981 .

[34]  D. Meisel,et al.  Luminescence quenching in the cluster network of perfluorosulfonate membrane , 1980 .

[35]  J. White,et al.  Photodecomposition of water over Pt/TiO2 catalysts , 1980 .

[36]  A. Bard,et al.  Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems , 1979 .

[37]  Wrighton Photoelectrochemical conversion of optical energy to electricity and fuels. Interim technical report , 1979 .

[38]  A. Bard Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors , 1979 .

[39]  Arthur J. Nozik,et al.  Photoelectrochemistry: Applications to Solar Energy Conversion , 1978 .

[40]  A. Bard,et al.  Heterogeneous Photocatalytic Preparation of Supported Catalysts. Photodeposition of Platinum on TiO2 Powder and Other Substrates , 1978 .

[41]  A. Bard,et al.  Direct Observation of Radical Intermediates in the Photo Kolbe Reaction—HeterogeneousPhotocatalytic Radical Formation by Electron Spin Resonance , 1978 .

[42]  A. Bard,et al.  Photoelectrosynthesis of ethane from acetate ion at an n-type TiO/sub 2/ electrode. The photo-Kolbe reaction , 1977 .

[43]  Allen J. Bard,et al.  Thermodynamic Potential for the Anodic Dissolution of n‐Type Semiconductors A Crucial Factor Controlling Durability and Efficiency in Photoelectrochemical Cells and an Important Criterion in the Selection of New Electrode/Electrolyte Systems , 1977 .

[44]  J. Harbour,et al.  Superoxide generation in the photolysis of aqueous cadmium sulfide dispersions. Detection by spin trapping , 1977 .

[45]  Allen J. Bard,et al.  Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders , 1977 .

[46]  W. Kaiser,et al.  Infrared Absorption of Indium Antimonide , 1955 .

[47]  R. G. Breckenridge,et al.  Electrical and Optical Properties of Intermetallic Compounds. I. Indium Antimonide , 1954 .

[48]  G. H. Wheatley,et al.  Anomalous Optical Behavior of InSb and InAs , 1954 .

[49]  E. Burstein Anomalous Optical Absorption Limit in InSb , 1954 .

[50]  M. Tanenbaum,et al.  Optical Properties of Indium Antimonide , 1953 .