Measurements of the temperature and velocity of the dense fuel layer in inertial confinement fusion experiments.

The apparent ion temperature and mean velocity of the dense deuterium tritium fuel layer of an inertial confinement fusion target near peak compression have been measured using backscatter neutron spectroscopy. The average isotropic residual kinetic energy of the dense deuterium tritium fuel is estimated using the mean velocity measurement to be ∼103 J across an ensemble of experiments. The apparent ion-temperature measurements from high-implosion velocity experiments are larger than expected from radiation-hydrodynamic simulations and are consistent with enhanced levels of shell decompression. These results suggest that high-mode instabilities may saturate the scaling of implosion performance with the implosion velocity for laser-direct-drive implosions.

[1]  J. Chittenden,et al.  Synthetic nuclear diagnostics for inferring plasma properties of inertial confinement fusion implosions , 2018, Physics of Plasmas.

[2]  T. C. Sangster,et al.  A suite of neutron time-of-flight detectors to measure hot-spot motion in direct-drive inertial confinement fusion experiments on OMEGA , 2020 .

[3]  J. Knauer,et al.  A generalized forward fit for neutron detectors with energy-dependent response functions , 2020 .

[4]  C. J. Cerjan,et al.  Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments , 2015 .

[5]  J. A. Marozas,et al.  Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facilitya) , 2014 .

[6]  R. Betti,et al.  The Physics of Long- and Intermediate-Wavelength Asymmetries of the Hot Spot , 2017 .

[7]  P. B. Radha,et al.  High-dynamic-range neutron time-of-flight detector used to infer the D(t,n)4He and D(d,n)3He reaction yield and ion temperature on OMEGA. , 2016, The Review of scientific instruments.

[8]  T. C. Sangster,et al.  A gated liquid-scintillator-based neutron detector for fast-ignitor experiments and down-scattered neutron measurements. , 2010, The Review of scientific instruments.

[9]  R. Betti,et al.  Theory of ignition and burn propagation in inertial fusion implosions , 2020 .

[10]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[11]  Karen S. Anderson,et al.  Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement , 2010 .

[12]  Edward I. Moses,et al.  Ignition on the National Ignition Facility , 2007 .

[13]  V N Goncharov,et al.  High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited). , 2012, The Review of scientific instruments.

[14]  P. B. Radha,et al.  Understanding the effects of laser imprint on plastic-target implosions on OMEGA , 2016 .

[15]  J. Chittenden,et al.  Neutron backscatter edge: A measure of the hydrodynamic properties of the dense DT fuel at stagnation in ICF experiments , 2019, Physics of Plasmas.

[16]  Thomas J. Murphy,et al.  The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra , 2014 .

[17]  S. Skupsky,et al.  Deceleration phase of inertial confinement fusion implosions , 2002 .

[18]  J. Chittenden,et al.  Density determination of the thermonuclear fuel region in inertial confinement fusion implosions , 2020 .

[19]  J. Chittenden,et al.  The effects of ion temperature on the energy spectra of T + T → 2n + α reaction products , 2016 .

[20]  T. C. Sangster,et al.  Calibration of a neutron time-of-flight detector with a rapid instrument response function for measurements of bulk fluid motion on OMEGA. , 2018, The Review of scientific instruments.

[21]  J. Knauer,et al.  Reconstructing 3D asymmetries in laser-direct-drive implosions on OMEGA. , 2021, Review of Scientific Instruments.

[22]  J. Kilkenny,et al.  Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility , 2014 .

[23]  Riccardo Betti,et al.  Hydrodynamic relations for direct-drive fast-ignition and conventional inertial confinement fusion implosions , 2007 .

[24]  J. Kwiatkowski,et al.  Mitigation of mode-one asymmetry in laser-direct-drive inertial confinement fusion implosions , 2021, Physics of Plasmas.

[25]  P. B. Radha,et al.  Demonstrating ignition hydrodynamic equivalence in direct-drive cryogenic implosions on OMEGA , 2016 .

[26]  T. C. Sangster,et al.  Effects of local defect growth in direct-drive cryogenic implosions on OMEGA , 2013 .

[27]  P. B. Radha,et al.  Development of an inertial confinement fusion platform to study charged-particle-producing nuclear reactions relevant to nuclear astrophysics , 2017 .

[28]  J. Nuckolls,et al.  Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications , 1972, Nature.

[29]  R. Betti,et al.  Nonlinear bubble competition of the multimode ablative Rayleigh–Taylor instability and applications to inertial confinement fusion , 2020 .

[30]  J. A. Marozas,et al.  Two-dimensional simulations of plastic-shell, direct-drive implosions on OMEGA , 2004 .

[31]  E. M. Campbell,et al.  Tripled yield in direct-drive laser fusion through statistical modelling , 2019, Nature.

[32]  D. R. Speck,et al.  Laser fusion ion temperatures determined by neutron time‐of‐flight techniques , 1977 .

[33]  R. Betti,et al.  Hot-spot dynamics and deceleration-phase Rayleigh–Taylor instability of imploding inertial confinement fusion capsules , 2001 .

[34]  S. Le Pape,et al.  Plasma stopping-power measurements reveal transition from non-degenerate to degenerate plasmas , 2020 .

[35]  J. Knauer,et al.  Application of an energy-dependent instrument response function to analysis of nTOF data from cryogenic DT experiments. , 2021, The Review of scientific instruments.

[36]  J. P. Chittenden,et al.  The production spectrum in fusion plasmas , 2011 .

[37]  B. Spears,et al.  Using multiple neutron time of flight detectors to determine the hot spot velocity. , 2018, The Review of scientific instruments.

[38]  T. Murphy,et al.  Neutron time-of-flight signals from expanding or contracting spherical sources , 1996 .

[39]  R. B. Ehrlich,et al.  Nuclear imaging of the fuel assembly in ignition experimentsa) , 2012 .

[40]  P. B. Radha,et al.  Analysis of trends in experimental observables: Reconstruction of the implosion dynamics and implications for fusion yield extrapolation for direct-drive cryogenic targets on OMEGA , 2018, Physics of Plasmas.

[41]  R Paguio,et al.  The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF. , 2013, The Review of scientific instruments.

[42]  V. Goncharov,et al.  A framed, 16-image Kirkpatrick-Baez x-ray microscope. , 2017, The Review of scientific instruments.

[43]  L. Divol,et al.  Hotspot conditions achieved in inertial confinement fusion experiments on the National Ignition Facility , 2020, Physics of Plasmas.

[44]  Po-Yu Chang,et al.  Effects of residual kinetic energy on yield degradation and ion temperature asymmetries in inertial confinement fusion implosions , 2018 .

[45]  T. C. Sangster,et al.  A new neutron time-of-flight detector for fuel-areal-density measurements on OMEGA. , 2013, The Review of scientific instruments.

[46]  R. Betti,et al.  Inertial-confinement fusion with lasers , 2016, Nature Physics.

[47]  G. Gorini,et al.  Relativistic calculation of fusion product spectra for thermonuclear plasmas , 1998 .