Experimental study of trace element distribution between calcite, fluorite and carbonatitic melt in the system CaCO3 + CaF2 + Na2CO3 ± Ca3(PO4)2 at 100 MPa

[1]  I. Veksler,et al.  Trace-element composition of minerals and rocks in the Belaya Zima carbonatite complex (Russia): Implications for the mechanisms of magma evolution and carbonatite formation , 2017 .

[2]  W. Dawes,et al.  REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite , 2017 .

[3]  A. Chakhmouradian,et al.  Calcite and dolomite in intrusive carbonatites. II. Trace-element variations , 2016, Mineralogy and Petrology.

[4]  Z. Hou,et al.  A model for carbonatite hosted REE mineralisation — the Mianning–Dechang REE belt, Western Sichuan Province, China , 2015 .

[5]  E. Olsen,et al.  Phase Equilibria Evaluation for CO2 Capture: CaO–CaF2–NaF, CaCO3–NaF–CaF2, and Na2CO3–CaF2–NaF , 2014 .

[6]  H. Mattsson,et al.  Element Partitioning between Immiscible Carbonatite and Silicate Melts for Dry and H2O-bearing Systems at 1-3 GPa , 2013 .

[7]  A. Gerdes,et al.  Trace element partitioning between mantle minerals and silico-carbonate melts at 6-12 GPa and applications to mantle metasomatism and kimberlite genesis , 2013 .

[8]  D. Günther,et al.  Element partitioning between immiscible carbonatite–kamafugite melts with application to the Italian ultrapotassic suite , 2012 .

[9]  D. Dingwell,et al.  Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite , 2012 .

[10]  J. Hellstrom,et al.  Iolite: Freeware for the visualisation and processing of mass spectrometric data , 2011 .

[11]  A. Girnis,et al.  Melting of K-rich carbonated peridotite at 6–10 GPa and the stability of K-phases in the upper mantle , 2011 .

[12]  J. Devidal,et al.  Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure , 2010 .

[13]  A. Rosenthal,et al.  The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar , 2009 .

[14]  Wenyi Xu,et al.  Continuous carbonatitic melt–fluid evolution of a REE mineralization system: Evidence from inclusions in the Maoniuping REE Deposit, Western Sichuan, China , 2009 .

[15]  W. McDonough,et al.  Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts , 2009 .

[16]  B. Moine,et al.  Trace element partitioning during partial melting of carbonated eclogites , 2009 .

[17]  B. Kjarsgaard,et al.  Carbonatite occurrences of the world: map and database , 2008 .

[18]  J. Hellstrom,et al.  Isotopic and Elemental Imaging of Geological Materials by Laser Ablation Inductively Coupled Plasma‐Mass Spectrometry , 2007 .

[19]  Y. Lahaye,et al.  Experimental Melting of Carbonated Peridotite at 6-10 GPa , 2007 .

[20]  M. Hirschmann,et al.  Effect of variable carbonate concentration on the solidus of mantle peridotite , 2007 .

[21]  S. Klemme,et al.  Rare earth element partitioning between titanite and silicate melts: Henry's law revisited , 2006 .

[22]  M. Hirschmann,et al.  Melting in the Earth's deep upper mantle caused by carbon dioxide , 2006, Nature.

[23]  R. H. Mitchell CARBONATITES AND CARBONATITES AND CARBONATITES , 2005 .

[24]  G. Gudfinnsson,et al.  Continuous Gradations among Primary Carbonatitic, Kimberlitic, Melilititic, Basaltic, Picritic, and Komatiitic Melts in Equilibrium with Garnet Lherzolite at 3–8 GPa , 2005 .

[25]  B. Kjarsgaard,et al.  Solubility of niobium in the system CaCO3–CaF2–NaNbO3 at 0.1 GPa pressure: implications for the crystallization of pyrochlore from carbonatite magma , 2004 .

[26]  A. Kent,et al.  Mineral/melt partitioning of trace elements during hydrous peridotite partial melting , 2003 .

[27]  R. Linnen,et al.  A filler-rod technique for controlling redox conditions in cold-seal pressure vessels , 2003 .

[28]  B. Kjarsgaard,et al.  Solubility of niobium in the system CaCO3–Ca(OH)2–NaNbO3 at 0.1 GPa pressure , 2002 .

[29]  R. W. Le Maitre,et al.  Igneous Rocks: A Classification and Glossary of Terms , 2002 .

[30]  J. Blundy,et al.  Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism , 2000 .

[31]  S. Sokolov,et al.  Mineralogy of Crystallized Melt Inclusions from Gardiner and Kovdor Ultramafic Alkaline Complexes: Implications for Carbonatite Genesis , 1998 .

[32]  D. Dingwell,et al.  Trace Element Partitioning in Immiscible Silicate–Carbonate Liquid Systems: an Initial Experimental Study Using a Centrifuge Autoclave , 1998 .

[33]  D. C. Presnall,et al.  The Continuum of Primary Carbonatitic-Kimberlitic Melt Compositions in Equilibrium with Lherzolite: Data from the System CaO-MgO-Al2O3-SiO2-CO2 at 6 GPa , 1998 .

[34]  D. C. Presnall,et al.  Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa , 1998 .

[35]  R. Mitchell Preliminary studies of the solubility and stability of perovskite group compounds in the synthetic carbonatite system calcite-portlandite , 1997 .

[36]  V. Prozesky,et al.  Selected trace and minor element partitioning between peridotite minerals and carbonatite melts at 18-46 kb pressure , 1995 .

[37]  D. Günther,et al.  Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions , 1995 .

[38]  R. Sweeney Carbonatite melt compositions in the Earth's mantle , 1994 .

[39]  T. Green Experimental studies of trace-element partitioning applicable to igneous petrogenesis , 1994 .

[40]  P. Wyllie,et al.  Experimental Data Bearing on Liquid Immiscibility, Crystal Fractionation, and the Origin of Calciocarbonatites and Natrocarbonatites , 1994 .

[41]  J. Gittins,et al.  Pyrochlore crystallization in carbonatites; the role of fluorine , 1993 .

[42]  P. Wyllie,et al.  Relationships between silicate melts and carbonate-precipitating melts in CaO-MgO-SiO2-CO2-H2O at 2 kbar , 1993 .

[43]  N. V. Trubkin,et al.  Partitioning of rare earth elements between phosphate-rich carbonatite melts and mantle peridotites , 1993 .

[44]  J. Adam,et al.  Trace element partitioning between silicate minerals and carbonatite at 25 kbar and application to mantle metasomatism , 1992 .

[45]  D. Green,et al.  Solidus of carbonated fertile peridotite under fluid-saturated conditions , 1990 .

[46]  D. Green,et al.  The solidus of carbonated, fertile peridotite , 1989 .

[47]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[48]  D. Green,et al.  An experimental determination of primary carbonatite magma composition , 1988, Nature.

[49]  D. Eggler The effect of CO<2) upon partial melting of peridotite in the system Na<2) O-CaO-Al<2) O<3) -MgO-SiO<2) -CO<2) to 35 kb, with an analysis of melting in a peridotite-H<2) O-CO<2) system , 1978 .

[50]  P. Wyllie,et al.  Carbonation and melting reactions in the system CaO–MgO–SiO2–CO2 at mantle pressures with geophysical and petrological applications , 1976 .