Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia

[1]  F. Brown,et al.  Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma , 2015, Proceedings of the National Academy of Sciences.

[2]  J. Russell,et al.  Compound-specific carbon isotope records of vegetation and hydrologic change in central Sulawesi, Indonesia, since 53,000 yr BP , 2015 .

[3]  J. Leonard,et al.  Phylogeography of vertebrates on the Sunda Shelf: a multi‐species comparison , 2015 .

[4]  F. d’Errico,et al.  Homo erectus at Trinil on Java used shells for tool production and engraving , 2014, Nature.

[5]  F. Longstaffe,et al.  Investigating inherent differences in isotopic composition between human bone and enamel bioapatite: implications for reconstructing residential histories , 2014 .

[6]  E. Niedermeyer,et al.  Hydroclimate of the western Indo-Pacific Warm Pool during the past 24,000 years , 2014, Proceedings of the National Academy of Sciences.

[7]  J. Russell,et al.  Glacial forcing of central Indonesian hydroclimate since 60,000 y B.P. , 2014, Proceedings of the National Academy of Sciences.

[8]  M. Griffiths,et al.  Abrupt increase in east Indonesian rainfall from flooding of the Sunda Shelf ∼9500 years ago , 2013 .

[9]  R. Leakey,et al.  Stable isotope-based diet reconstructions of Turkana Basin hominins , 2013, Proceedings of the National Academy of Sciences of the United States of America.

[10]  C. Stringer,et al.  U-series and radiocarbon analyses of human and faunal remains from Wajak, Indonesia. , 2013, Journal of human evolution.

[11]  J. Vos,et al.  The enigmatic bovid Duboisia santeng (Dubois, 1891) from the Early-Middle Pleistocene of Java: A multiproxy approach to its paleoecology , 2013 .

[12]  S. Antón Homo Erectus and Related Taxa , 2013 .

[13]  M. Hyodo,et al.  High-resolution record of the Matuyama–Brunhes transition constrains the age of Javanese Homo erectus in the Sangiran dome, Indonesia , 2011, Proceedings of the National Academy of Sciences.

[14]  Hannah E Marsh,et al.  New 1.5 million-year-old Homo erectus maxilla from Sangiran (Central Java, Indonesia). , 2011, Journal of human evolution.

[15]  Campbell O. Webb,et al.  Soils on exposed Sunda Shelf shaped biogeographic patterns in the equatorial forests of Southeast Asia , 2011, Proceedings of the National Academy of Sciences.

[16]  M. Kohn Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate , 2010, Proceedings of the National Academy of Sciences.

[17]  F. Sheldon,et al.  Phylogeny of magpie‐robins and shamas (Aves: Turdidae: Copsychus and Trichixos): implications for island biogeography in Southeast Asia , 2010 .

[18]  E. Meijaard,et al.  Palaeoecology of Southeast Asian megafauna‐bearing sites from the Pleistocene and a review of environmental changes in the region , 2010 .

[19]  M. Griffiths,et al.  Younger Dryas-Holocene temperature and rainfall history of southern Indonesia from delta O-18 in spe , 2010 .

[20]  J. Leonard,et al.  Speciation dynamics in the SE Asian tropics: Putting a time perspective on the phylogeny and biogeography of Sundaland tree squirrels, Sundasciurus. , 2010, Molecular phylogenetics and evolution.

[21]  D. Woodruff Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity , 2010, Biodiversity and Conservation.

[22]  M. Gagan,et al.  Oscillations in the southern extent of the Indo-Pacific Warm Pool during the mid-Holocene , 2009 .

[23]  Ian Cartwright,et al.  Increasing Australian–Indonesian monsoon rainfall linked to early Holocene sea-level rise , 2009 .

[24]  C. Warinner,et al.  Alkaline cooking and stable isotope tissue-diet spacing in swine: archaeological implications , 2009 .

[25]  C. Cannon,et al.  The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance , 2009, Proceedings of the National Academy of Sciences.

[26]  V. Gardien,et al.  Pleistocene seasonal temperature variations recorded in the d18O of Bison priscus teeth , 2009 .

[27]  S. Antón,et al.  Earliest Indonesian facial and dental remains from Sangiran, Java: a description of Sangiran 27 , 2008 .

[28]  Stephen R. Frost,et al.  Herbivore enamel carbon isotopic composition and the environmental context of ardipithecus at Gona, Ethiopia , 2008 .

[29]  M. Bamford,et al.  Isotopic evidence for contrasting diets of early hominins Homo habilis and Australopithecus boisei of Tanzania , 2008 .

[30]  Jatmiko,et al.  Age and biostratigraphic significance of the Punung Rainforest Fauna, East Java, Indonesia, and implications for Pongo and Homo. , 2007, Journal of human evolution.

[31]  A. Chivas,et al.  Initial speleothem results from western Flores and eastern Java, Indonesia: were climate changes from 47 to 5 ka responsible for the extinction of Homo floresiensis? , 2007 .

[32]  J. Lee-Thorp,et al.  Contributions of biogeochemistry to understanding hominin dietary ecology. , 2006, American journal of physical anthropology.

[33]  J. Ehleringer,et al.  A stable isotope aridity index for terrestrial environments. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. de Vos,et al.  Relocation of the 1936 Mojokerto skull discovery site near Perning, East Java. , 2006, Journal of human evolution.

[35]  Y. Kaifu Advanced dental reduction in Javanese Homo erectus , 2006 .

[36]  J. Lee-Thorp,et al.  Enamel diagenesis at South African Australopith sites: Implications for paleoecological reconstruction with trace elements , 2006 .

[37]  T. Cerling,et al.  Dietary adaptations of extant and Neogene African suids , 2006 .

[38]  F. Schrenk,et al.  Taxonomic affinities and evolutionary history of the Early Pleistocene hominids of Java: dentognathic evidence. , 2005, American journal of physical anthropology.

[39]  C. Hunt,et al.  Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: a savanna corridor in Sundaland? , 2005 .

[40]  Y. Kaifu,et al.  Hominid mandibular remains from Sangiran: 1952-1986 collection. , 2005, American journal of physical anthropology.

[41]  J. Ehleringer,et al.  Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals , 2005 .

[42]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[43]  S. Carlson,et al.  Microscale δ18O and δ13C isotopic analysis of an ontogenetic series of the hadrosaurid dinosaur Edmontosaurus: implications for physiology and ecology , 2004 .

[44]  G. Dromart,et al.  Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels , 2003 .

[45]  C. C. Grant,et al.  DIETS OF SOUTHERN AFRICAN BOVIDAE: STABLE ISOTOPE EVIDENCE , 2003 .

[46]  T. Cerling,et al.  DIETS OF EAST AFRICAN BOVIDAE BASED ON STABLE ISOTOPE ANALYSIS , 2003 .

[47]  C. Bogey,et al.  Stable isotope composition and rare earth element content of vertebrate remains from the Late Cretaceous of northern Spain (Laño): did the environmental record survive? , 2003 .

[48]  J. Vos,et al.  The Late Quaternary palaeogeography of mammal evolution in the Indonesian Archipelago , 2001 .

[49]  Sudijono,et al.  Early Pleistocene 40Ar/39Ar ages for Bapang Formation hominins, Central Jawa, Indonesia , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[50]  H. Voris Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations , 2000 .

[51]  J. Ehleringer,et al.  Establishing a grassland signature in veins: 18O in the leaf water of C3 and C4 grasses. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Z. Sharp,et al.  THE EFFECT OF DIAGENESIS ON OXYGEN ISOTOPE RATIOS OF BIOGENIC PHOSPHATES , 2000 .

[53]  R. Mittermeier,et al.  Biodiversity hotspots for conservation priorities , 2000, Nature.

[54]  T. Cerling,et al.  Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies , 1999, Oecologia.

[55]  C. Lécuyer,et al.  δ18O values of coexisting brachiopods and fish: Temperature differences and estimates of paleo–water depths , 1998 .

[56]  W. Clyde,et al.  Intra-tooth variations in δ18O (PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables , 1998 .

[57]  J. Ehleringer,et al.  Global vegetation change through the Miocene/Pliocene boundary , 1997, Nature.

[58]  N. Tuross,et al.  The Effects of Sample Treatment and Diagenesis on the Isotopic Integrity of Carbonate in Biogenic Hydroxylapatite , 1997 .

[59]  H. Bocherens,et al.  Isotopic biogeochemistry ( 13 C, 18 O) of mammalian enamel from African Pleistocene hominid sites , 1996 .

[60]  C. K. Brain,et al.  Diet of Australopithecus robustus at Swartkrans from stable carbon isotopic analysis , 1994 .

[61]  Yang Wang,et al.  A model of fossil tooth and bone diagenesis: implications for paleodiet reconstruction from stable isotopes , 1994 .

[62]  E. Medina,et al.  The canopy effect, carbon isotope ratios and foodwebs in Amazonia , 1991 .

[63]  R. Mason,et al.  Cathodoluminescence activation in manganese-bearing and rare earth-bearing synthetic calcites , 1990 .

[64]  J. Sealy,et al.  Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet , 1989 .

[65]  D. Dettman,et al.  Oxygen isotope variation in the tusks of extinct proboscideans: A measure of season of death and seasonality , 1989 .

[66]  Y. Kolodny,et al.  Oxygen isotope variation in bone phosphate , 1989 .

[67]  James R. Ehleringer,et al.  Correlations between carbon isotope ratio and microhabitat in desert plants , 1988, Oecologia.

[68]  J. Flenley,et al.  Late Quaternary Vegetational History of the Central Highlands of Sumatra. II. Palaeopalynology and Vegetational History , 1988 .

[69]  Y. Kolodny,et al.  Oxygen isotopes in phosphatic fish remains from Israel: Paleothermometry of tropical cretaceous and tertiary shelf waters , 1988 .

[70]  A. Longinelli Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? , 1984 .

[71]  R. Morley A Palaeoecological Interpretation of a 10,000 Year Pollen Record from Danau Padang, Central Sumatra, Indonesia , 1982 .

[72]  B. Maloney Pollen analytical evidence for early forest clearance in North Sumatra , 1980, Nature.

[73]  M. J. Deniro,et al.  Influence of Diet On the Distribtion of Nitrogen Isotopes in Animals , 1978 .

[74]  S. Epstein,et al.  Two Categories of 13C/12C Ratios for Higher Plants , 1971 .

[75]  B. Kurtén Pleistocene Mammals of Europe , 1968 .

[76]  M. D. Hatch,et al.  Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation. , 1966, The Biochemical journal.

[77]  T. A. Pedersen,et al.  PHOTOSYNTHESIS OF CARBON COMPOUNDS , 1966 .

[78]  W. Dansgaard Stable isotopes in precipitation , 1964 .

[79]  H. Craig Isotopic Variations in Meteoric Waters , 1961, Science.

[80]  D. Geraads,et al.  Dietary and paleoenvironmental reconstruction using stable isotopes of herbivore tooth enamel from middle Pliocene Dikika, Ethiopia: implication for Australopithecus afarensis habitat and food resources. , 2013, Journal of human evolution.

[81]  J. Okuno,et al.  Formation and fate of sedimentary depocentres on Southeast Asia's Sunda Shelf over the past sea-level cycle and biogeographic implications , 2011 .

[82]  F. Hoffman Provenience Reassessment of the 1931–1933 Ngandong Homo erectus (Java),Confirmation of the Bone-Bed Origin Reported by the Discoverers , 2010 .

[83]  E. Sathiamurthy,et al.  Maps of Holocene sea level transgression and submerged lakes on the Sunda Shelf , 2006 .

[84]  P. Minchin,et al.  Stratification of δ13C values of leaves in Amazonian rain forests , 2004, Oecologia.

[85]  T. Hart,et al.  Stable isotope ecology in the Ituri Forest , 2003, Oecologia.

[86]  F. Guichard,et al.  A Late Quaternary palaeoecological record from the Banda Sea, Indonesia: patterns of vegetation, climate and biomass burning in Indonesia and northern Australia , 2000 .

[87]  S. Kaars,et al.  Vegetation and climate change in West-Java, Indonesia during the last 135,000 years , 1997 .

[88]  Peter D. Erskine,et al.  13C Natural Abundance in Plant Communities Along a Rainfall Gradient: a Biological Integrator of Water Availability , 1995 .

[89]  J. Ehleringer,et al.  Carbon Isotope Discrimination and Photosynthesis , 1989 .

[90]  J. Vos The Pongo faunas from Java and Sumatra and their significance for biostratigraphical and paleo-ecological interpretations , 1983 .

[91]  M. H. Day Guide to fossil man , 1977 .

[92]  A. Hoogerwerf Udjung Kulon - the land of the last Javan rhinoceros. , 1970 .

[93]  F. Weidenreich,et al.  Neue Pithecanthropus-Funde, 1936-1938 : ein Beitrag zur Kenntnis der Praehominiden , 1940 .

[94]  Eugène Dubois Pithecanthropus Erectus : eine menschnaehnliche Uebergangsform aus Java , 1915 .

[95]  M. Blanckenhorn,et al.  Die Pithecanthropus-Schichten auf Java. , 1911 .

[96]  E. Dubois On Pithecanthropus Erectus: A Transitional form Between Man and the Apes , 1896 .