Quantum dot lasers based on a stacked and strain-compensated active region grown by metal-organic chemical vapor deposition

We demonstrate an InAs∕GaAs quantum dot (QD) laser based on a strain-compensated, three-stack active region. Each layer of the stacked QD active region contains a thin GaP (Δao=−3.8%) tensile layer embedded in a GaAs matrix to partially compensate the compressive strain of the InAs (Δao=7%) QD layer. The optimized GaP thickness is ∼4MLs and results in a 36% reduction of compressive strain in our device structure. Atomic force microscope images, room-temperature photoluminescence, and x-ray diffraction confirm that strain compensation improves both structural and optical device properties. Room-temperature ground state lasing at λ=1.249μm, Jth=550A∕cm2 has been demonstrated.

[1]  Diana L. Huffaker,et al.  Formation trends in quantum dot growth using metalorganic chemical vapor deposition , 2003 .

[2]  R. People,et al.  Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures , 1985 .

[3]  N. Yokoyama,et al.  Size, density, and shape of InAs quantum dots in closely stacked multilayers grown by the Stranski-Krastanow mode , 2003 .

[4]  Dennis G. Deppe,et al.  1.3 μm InAs quantum dot laser with To=161 K from 0 to 80 °C , 2002 .

[5]  J. Massies,et al.  Photoluminescence energy and interface chemistry of GaInP/GaAs quantum wells , 1997 .

[6]  Andreas Stintz,et al.  Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers , 2001 .

[7]  A. Ovtchinnikov,et al.  Strain‐compensated InGaAs/GaAsP/GaInAsP/GaInP quantum well lasers (λ∼0.98 μm) grown by gas‐source molecular beam epitaxy , 1993 .

[8]  G. Solomon,et al.  Electroluminescence in vertically aligned quantum dot multilayer light‐emitting diodes fabricating by growth‐induced islanding , 1996 .

[9]  S. Ganapathy,et al.  Improvement of InAs quantum-dot optical properties by strain compensation with GaNAs capping layers , 2003 .

[10]  D. Bimberg,et al.  1.24 μm InGaAs/GaAs quantum dot laser grown by metalorganic chemical vapor deposition using tertiarybutylarsine , 2004 .

[11]  Y. Wang,et al.  High-frequency modulation characteristics of 1.3-/spl mu/m InGaAs quantum dot lasers , 2004, IEEE Photonics Technology Letters.

[12]  Yasuhiko Arakawa,et al.  InAs∕GaAs self-assembled quantum-dot lasers grown by metalorganic chemical vapor deposition—Effects of postgrowth annealing on stacked InAs quantum dots , 2004 .

[13]  Nikolai N. Ledentsov,et al.  1.3 µm luminescence and gain from defect-free InGaAs-GaAs quantum dots grown by metal-organic chemical vapour deposition , 2000 .

[14]  Chennupati Jagadish,et al.  InGaAs quantum dots grown with GaP strain compensation layers , 2004 .

[15]  U. Koren,et al.  Strain‐compensated strained‐layer superlattices for 1.5 μm wavelength lasers , 1991 .

[16]  A. Stintz,et al.  Low-threshold current density 1.3-μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure , 2000, IEEE Photonics Technology Letters.

[17]  S. Ganapathy,et al.  Photoluminescence study of InAs quantum dots embedded in GaNAs strain compensating layer grown by metalorganic-molecular-beam epitaxy , 2002 .

[18]  Diana L. Huffaker,et al.  Effect of strain-compensation in stacked 1.3μm InAs∕GaAs quantum dot active regions grown by metalorganic chemical vapor deposition , 2004 .