Evaluation of phacoemulsification‐induced oxidative stress and damage of cultured human corneal endothelial cells in different solutions using redox fluorometry microscopy

Acta Ophthalmol. 2010: 88: e323–e327

[1]  D. Ponzin,et al.  Donor tissue preparation for Descemet membrane endothelial keratoplasty , 2010, British Journal of Ophthalmology.

[2]  Peter L Gehlbach,et al.  The effect of phacoemulsification energy on the redox state of cultured human corneal endothelial cells. , 2009, Archives of ophthalmology.

[3]  R. Chuck,et al.  Demonstration by redox fluorometry that sulforaphane protects retinal pigment epithelial cells against oxidative stress. , 2008, Investigative ophthalmology & visual science.

[4]  Y. Ko,et al.  Factors related to corneal endothelial damage after phacoemulsification in eyes with occludable angles , 2008, Journal of cataract and refractive surgery.

[5]  Nicholas A. Ramey,et al.  Imaging Mitochondria in Living Corneal Endothelial Cells Using Autofluorescence Microscopy , 2007, Photochemistry and photobiology.

[6]  B. Bavister,et al.  Mitochondria in stem cells. , 2007, Mitochondrion.

[7]  A. Gedanken,et al.  Protective effect of free‐radical scavengers on corneal endothelial damage in phacoemulsification , 2007, Journal of cataract and refractive surgery.

[8]  R. Chuck,et al.  Cellular redox state predicts in vitro corneal endothelial cell proliferation capacity. , 2006, Experimental eye research.

[9]  G. Melles,et al.  Descemet membrane endothelial keratoplasty (DMEK). , 2006, Cornea.

[10]  Fan Yang,et al.  Metabolic Changes in Mesenchymal Stem Cells in Osteogenic Medium Measured by Autofluorescence Spectroscopy , 2006, Stem cells.

[11]  N. Joyce Cell cycle status in human corneal endothelium. , 2005, Experimental eye research.

[12]  N. Joyce,et al.  Human Corneal Endothelial Cell Proliferation: Potential for Use in Regenerative Medicine , 2004, Cornea.

[13]  N. Joyce,et al.  Proliferative response of corneal endothelial cells from young and older donors. , 2004, Investigative ophthalmology & visual science.

[14]  A. Augustin,et al.  Oxidative tissue damage after phacoemulsification: Influence of ophthalmic viscosurgical devices , 2004, Journal of cataract and refractive surgery.

[15]  N. Joyce Proliferative capacity of the corneal endothelium , 2003, Progress in Retinal and Eye Research.

[16]  Watt W Webb,et al.  Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. , 2002, Biophysical journal.

[17]  M. Stur,et al.  Influence of viscoelastic substances used in cataract surgery on corneal metabolism and endothelial morphology: comparison of Healon and Viscoat , 2001, Journal of cataract and refractive surgery.

[18]  K. Tsubota,et al.  Non-invasive assessment of the donor corneal endothelium using ocular redox fluorometry. , 1996, The British journal of ophthalmology.

[19]  K. Tsubota,et al.  Distribution of autofluorescence in the rabbit corneal epithelium. , 1993, Ophthalmic research.

[20]  R A Laing,et al.  Correlation of redox fluorometry and analytical measurements of pyridine nucleotide. , 1989, Investigative ophthalmology & visual science.

[21]  S. Miglior,et al.  Lens redox fluorometry: pyridine nucleotide fluorescence and analysis of diabetic lens. , 1989, Experimental eye research.

[22]  K. Tsubota,et al.  Noninvasive metabolic analysis of preserved rabbit cornea. , 1988, Archives of ophthalmology.

[23]  K. Tsubota,et al.  [Noninvasive metabolic analysis of cultured corneas]. , 1988, Nippon Ganka Gakkai zasshi.

[24]  K. Tsubota,et al.  Noninvasive measurements of pyridine nucleotide and flavoprotein in the lens. , 1987, Investigative ophthalmology & visual science.

[25]  W. Kunz,et al.  Contribution of different enzymes to flavoprotein fluorescence of isolated rat liver mitochondria. , 1985, Biochimica et biophysica acta.