The General Linear Model: The Basics

Consider the following regression equation $$ y = X\beta + u $$ (7.1) where $$ y = \left[ {\begin{array}{*{20}{c}} {{Y_1}}\\ {{Y_2}}\\ :\\ {{Y_n}} \end{array}} \right];X = \left[ {\begin{array}{*{20}{c}} {{X_{11}}\quad {X_{12}}\quad \ldots \quad {X_{1k}}}\\ {{X_{21}}\quad {X_{22}}\quad \ldots \quad {X_{2k}}}\\ {:\quad \quad :\quad \quad :\quad \quad :}\\ {{X_{n1}}\quad {X_{n2}}\quad \ldots \quad {X_{nk}}} \end{array}} \right];\beta = \left[ {\begin{array}{*{20}{c}} {{\beta _1}}\\ {{\beta _2}}\\ :\\ {{\beta _k}} \end{array}} \right];u = \left[ {\begin{array}{*{20}{c}} {{u_1}}\\ {{u_2}}\\ :\\ {{u_n}} \end{array}} \right] $$ with n denoting the number of observations and k the number of variables in the regression, with n>k. In this case, y is a column vector of dimension (n × 1) and X is a matrix of dimension (n × k). Each column of X denotes a variable and each row of X denotes an observation on these variables. If y is log(wage) as in the empirical example in Chapter 4, see Table 4.1 then the columns of X contain a column of ones for the constant (usually the first column), weeks worked, years of full time experience, years of education, sex, race, marital status, etc.

[1]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[2]  David F. Hendry,et al.  Serial Correlation as a Convenient Simplification, not a Nuisance: A Comment on a Study of the Demand for Money by the Bank of England. , 1978 .

[3]  G. Chow Tests of equality between sets of coefficients in two linear regressions (econometrics voi 28 , 1960 .

[4]  Jean-Marie Dufour,et al.  Invariance, Nonlinear Models and Asymptotic Tests , 1991 .

[5]  Michael R. Veall,et al.  Formulating Wald Tests of Nonlinear Restrictions , 1985 .

[6]  Damodar Gujarati,et al.  Use of Dummy Variables in Testing for Equality between Sets of Coefficients in Two Linear Regressions: A Note , 1970 .

[7]  Kenneth J. White,et al.  Obtaining any Wald statistic you want , 1986 .

[8]  M. Lovell Seasonal Adjustment of Economic Time Series and Multiple Regression Analysis , 1963 .

[9]  S. R. Searle,et al.  Matrix Algebra Useful for Statistics , 1982 .

[10]  Damodar Gujarati,et al.  Use of Dummy Variables in Testing for Equality between Sets of Coefficients in Linear Regressions: A Generalization , 1970 .

[11]  David S. Salkever,et al.  The use of dummy variables to compute predictions, prediction errors, and confidence intervals , 1976 .

[12]  R. Frisch,et al.  Partial Time Regressions as Compared with Individual Trends , 1933 .

[13]  R. Engle Wald, likelihood ratio, and Lagrange multiplier tests in econometrics , 1984 .

[14]  A. Buse The Likelihood Ratio, Wald, and Lagrange Multiplier Tests: An Expository Note , 1982 .

[15]  H. Theil Introduction to econometrics , 1978 .

[16]  J. Burman Moving Seasonal Adjustment of Economic Time Series , 1965 .

[17]  F. Graybill An introduction to linear statistical models , 1961 .

[18]  Ernst R. Berndt,et al.  CONFLICT AMONG CRITERIA FOR TESTING HYPOTHESES IN THE MULTIVARIATE LINEAR REGRESSION MODEL , 1977 .

[19]  Allan W. Gregory,et al.  Wald tests of common factor restrictions , 1986 .