Instability and friction

A review on the stability analysis of solids in unilateral and frictional contact is given. The presentation is focussed on the stability of an equilibrium position of an elastic solid in frictional contact with a fixed or moving obstacle. The problem of divergence instability and the obtention of a criterion of static stability are discussed first for the case of a fixed obstacle. The possibility of flutter instability is then considered for a steady sliding equilibrium with a moving obstacle. The steady sliding solution is generically unstable by flutter and leads to a dynamic response which can be chaotic or periodic. This dynamic response leads to the generation of stick–slip–separation waves on the contact surface in a similar way as Schallamach waves in statics. Illustrating examples and principal results recently obtained in the literature are reported. Some problems of friction-induced vibration and noise emittence, such as brake squeal for example, can be interpreted in this spirit.

[1]  A. Klarbring A mathematical programming approach to three-dimensional contact problems with friction , 1986 .

[2]  R. Taylor,et al.  Lagrange constraints for transient finite element surface contact , 1991 .

[3]  John R. Rice,et al.  Slip dynamics at an interface between dissimilar materials , 2001 .

[4]  A. Klarbring Stability and Critical Points in Large Displacement Frictionless Contact Problems , 2002 .

[5]  M. Raous,et al.  Dynamic stability of finite dimensional linearly elastic systems with unilateral contact and Coulomb friction , 1999 .

[6]  G. Adams Dynamic Instabilities in the Sliding of Two Layered Elastic Half-Spaces , 1998 .

[7]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[8]  Michel Raous,et al.  Numerical characterization and computation of dynamic instabilities for frictional contact problems , 2002 .

[9]  Franck Moirot Etude de la stabilite d'un equilibre en presence de frottement de coulomb. Application au crissement des freins a disque , 1998 .

[10]  L. Andersson,et al.  A quasistatic frictional problem with normal compliance , 1991 .

[11]  Xavier Chateau,et al.  Buckling of elastic structures in unilateral contact with or without friction , 1991 .

[12]  F. Moirot,et al.  Brake squeal: a problem of flutter instability of the steady sliding solution? , 2000 .

[13]  Balth. van der Pol Jun. LXXXVIII. On “relaxation-oscillations” , 1926 .

[14]  Quoc Son Nguyen,et al.  Stability and Nonlinear Solid Mechanics , 2000 .

[15]  R. Hill A general theory of uniqueness and stability in elastic-plastic solids , 1958 .

[16]  Anders Klarbring,et al.  Derivation and analysis of rate boundary - value problems of frictional contact , 1990 .

[17]  O. Y. Zharii Frictional Contact Between the Surface Wave and a Rigid Strip , 1996 .

[18]  Z. Mroz Contact Friction Models and Stability Problems , 2002 .

[19]  M. Renardy Ill-posedness at the boundary for elastic solids sliding under Coulomb friction , 1992 .

[20]  F.M.F. Simões,et al.  Some Notes on Friction and Instabilities , 2002 .

[21]  H. Troger,et al.  Nonlinear stability and bifurcation theory , 1991 .

[22]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[23]  Existence and uniqueness for quasistatic contact problems with friction , 2002 .

[24]  Meir Shillor,et al.  A Global Existence Result for the Quasistatic Frictional Contact Problem with Normal Compliance , 1991 .

[25]  Quoc Son Nguyen,et al.  Bifurcation and stability in dissipative media (plasticity, friction, fracture) , 1994 .

[26]  M. Cocu,et al.  Analysis of an Incremental Formulation for Frictional Contact Problems , 1995 .

[27]  J. A. C. Martins,et al.  Dynamic Surface Solutions in Linear Elasticity and Viscoelasticity With Frictional Boundary Conditions , 1995 .

[28]  Yves Renard Modélisation des instabilités liées au frottement sec des solides élastiques, aspects théoriques et numériques. (Modelization of the instabilities of elastic solids under dry friction, theoretical and numerical aspects) , 1998 .

[29]  M. Oestreich,et al.  Bifurcation and stability analysis for a non-smooth friction oscillator , 1996 .

[30]  D. C. Drucker,et al.  Mechanics of Incremental Deformation , 1965 .

[31]  K. K.,et al.  Stick-slip vibrations and chaos , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[32]  Michel Raous,et al.  Consistent time discretization for a dynamical frictional contact problem and complementarity techniques , 1998 .

[33]  George G. Adams,et al.  Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction , 1995 .

[34]  Nguyen Quoc Son Bifurcation et stabilité des systèmes irréversibles obéissant au principe de dissipation maximale , 1984 .

[35]  J. T. Oden,et al.  Models and computational methods for dynamic friction phenomena , 1984 .

[36]  J. Lions,et al.  Les inéquations en mécanique et en physique , 1973 .

[37]  George G. Adams,et al.  Steady Sliding of Two Elastic Half-Spaces With Friction Reduction due to Interface Stick-Slip , 1998 .

[38]  D. A. Crolla,et al.  Paper VII (i) Brake Noise and Vibration - The State of the Art , 1991 .

[39]  Mikio Nakai,et al.  Band Brake Squeal , 1996 .

[40]  Franck Moirot,et al.  An example of stick-slip waves , 2000 .