The quantum separability problem is a simultaneous hollowisation matrix analysis problem

We use the generalized concurrence approach to investigate the general multipartite separability problem. By extending the preconcurrence matrix formalism to arbitrary multipartite systems, we show that the separability problem can be formulated equivalently as a pure matrix analysis problem that consists in determining whether a given set of symmetric matrices is simultaneously unitarily congruent to hollow matrices, i.e., to matrices whose main diagonal is only composed of zeroes.

[1]  CH' , 2018, Dictionary of Upriver Halkomelem.

[2]  R. C. Thompson Singular values and diagonal elements of complex symmetric matrices , 1979 .

[3]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Barbara M. Terhal Detecting quantum entanglement , 2002, Theor. Comput. Sci..

[6]  M C Teich,et al.  Role of entanglement in two-photon imaging. , 2001, Physical review letters.

[7]  He-Shan Song,et al.  Global entanglement for multipartite quantum states , 2006, quant-ph/0603038.

[8]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[9]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[10]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[11]  Michał Horodecki,et al.  Separability of Mixed Quantum States: Linear Contractions and Permutation Criteria , 2006, Open Syst. Inf. Dyn..

[12]  B. De Moor,et al.  Variational characterizations of separability and entanglement of formation , 2001 .

[13]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[14]  G. Vidal,et al.  Operational criterion and constructive checks for the separability of low-rank density matrices , 2000, quant-ph/0002089.

[15]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[16]  R. Horn,et al.  Simultaneous unitary equivalences , 2011, 1112.4446.

[17]  M. Horodecki,et al.  Concurrence in arbitrary dimensions , 2001, quant-ph/0107147.

[18]  R. Jozsa,et al.  A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .

[19]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[20]  Pawel Wocjan,et al.  Characterization of Combinatorially Independent Permutation Separability Criteria , 2005, Open Syst. Inf. Dyn..

[21]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[22]  J. Uffink,et al.  Partial separability and entanglement criteria for multiqubit quantum states , 2007, 0710.5326.

[23]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[24]  A. Uhlmann Entropy and Optimal Decompositions of States Relative to a Maximal Commutative Subalgebra , 1997, quant-ph/9704017.

[25]  H. Weinfurter,et al.  Free-Space distribution of entanglement and single photons over 144 km , 2006, quant-ph/0607182.