Parvalbumin-expressing interneurons can act solo while somatostatin-expressing interneurons act in chorus in most cases on cortical pyramidal cells

[1]  R. Tremblay,et al.  GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits , 2016, Neuron.

[2]  Satoru Kondo,et al.  Functional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons , 2015, eLife.

[3]  Haishan Yao,et al.  Control of response reliability by parvalbumin-expressing interneurons in visual cortex , 2015, Nature Communications.

[4]  Wade G. Regehr,et al.  Achieving High-Frequency Optical Control of Synaptic Transmission , 2014, The Journal of Neuroscience.

[5]  Yang Dan,et al.  Interneuron subtypes and orientation tuning , 2014, Nature.

[6]  M. Stryker,et al.  A Cortical Circuit for Gain Control by Behavioral State , 2014, Cell.

[7]  G. Fishell,et al.  Interneuron cell types are fit to function , 2014, Nature.

[8]  Michael Häusser,et al.  Target-Specific Effects of Somatostatin-Expressing Interneurons on Neocortical Visual Processing , 2013, The Journal of Neuroscience.

[9]  Ariel Agmon,et al.  Not all that glitters is gold: off-target recombination in the somatostatin–IRES-Cre mouse line labels a subset of fast-spiking interneurons , 2013, Front. Neural Circuits.

[10]  R. Yuste,et al.  Axo-dendritic overlap and laminar projection can explain interneuron connectivity to pyramidal cells. , 2013, Cerebral cortex.

[11]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[12]  Xiaolong Jiang,et al.  The organization of two new cortical interneuronal circuits , 2013, Nature Neuroscience.

[13]  E. Kuramoto,et al.  Cell Type-Specific Inhibitory Inputs to Dendritic and Somatic Compartments of Parvalbumin-Expressing Neocortical Interneuron , 2013, The Journal of Neuroscience.

[14]  R. Tremblay,et al.  Neocortical Somatostatin-Expressing GABAergic Interneurons Disinhibit the Thalamorecipient Layer 4 , 2013, Neuron.

[15]  T. Tsumoto,et al.  Cell Type-Specific, Presynaptic LTP of Inhibitory Synapses on Fast-Spiking GABAergic Neurons in the Mouse Visual Cortex , 2012, The Journal of Neuroscience.

[16]  Nathan R. Wilson,et al.  Division and subtraction by distinct cortical inhibitory networks in vivo , 2012, Nature.

[17]  Karl Deisseroth,et al.  Activation of Specific Interneurons Improves V1 Feature Selectivity and Visual Perception , 2012, Nature.

[18]  C. Akerman,et al.  Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission , 2012, Nature Neuroscience.

[19]  A. Agmon,et al.  Short-Term Plasticity of Unitary Inhibitory-to-Inhibitory Synapses Depends on the Presynaptic Interneuron Subtype , 2012, The Journal of Neuroscience.

[20]  M. Carandini,et al.  Parvalbumin-Expressing Interneurons Linearly Transform Cortical Responses to Visual Stimuli , 2012, Neuron.

[21]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[22]  R. Yuste,et al.  Dense, Unspecific Connectivity of Neocortical Parvalbumin-Positive Interneurons: A Canonical Microcircuit for Inhibition? , 2011, The Journal of Neuroscience.

[23]  Li I. Zhang,et al.  Broad Inhibition Sharpens Orientation Selectivity by Expanding Input Dynamic Range in Mouse Simple Cells , 2011, Neuron.

[24]  M. Carandini,et al.  GABAA Inhibition Controls Response Gain in Visual Cortex , 2011, The Journal of Neuroscience.

[25]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[26]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[27]  G. Fishell,et al.  The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors , 2010, The Journal of Neuroscience.

[28]  E. Callaway,et al.  Immunochemical characterization of inhibitory mouse cortical neurons: Three chemically distinct classes of inhibitory cells , 2010, The Journal of comparative neurology.

[29]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[30]  Tobias Rose,et al.  Optimizing the spatial resolution of Channelrhodopsin-2 activation , 2008, Brain cell biology.

[31]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[32]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[33]  A. Thomson,et al.  Functional Maps of Neocortical Local Circuitry , 2007, Front. Neurosci..

[34]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[35]  I. Módy,et al.  Differences between the scaling of miniature IPSCs and EPSCs recorded in the dendrites of CA1 mouse pyramidal neurons , 2006, The Journal of physiology.

[36]  A. Agmon,et al.  Distinct Subtypes of Somatostatin-Containing Neocortical Interneurons Revealed in Transgenic Mice , 2006, The Journal of Neuroscience.

[37]  Nelson Spruston,et al.  Distance-Dependent Differences in Synapse Number and AMPA Receptor Expression in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[38]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[39]  T. Tsumoto,et al.  Modification of orientation sensitivity of cat visual cortex neurons by removal of GABA-mediated inhibition , 1979, Experimental Brain Research.

[40]  T. Kaneko,et al.  Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67‐GFP knock‐in mouse , 2003, The Journal of comparative neurology.

[41]  R. Shapley,et al.  Dynamics of Orientation Selectivity in the Primary Visual Cortex and the Importance of Cortical Inhibition , 2003, Neuron.

[42]  S. Hestrin,et al.  Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  G. Stuart,et al.  Dependence of EPSP Efficacy on Synapse Location in Neocortical Pyramidal Neurons , 2002, Science.

[44]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[45]  P. Somogyi,et al.  Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons , 2000, Nature Neuroscience.

[46]  S. Hestrin,et al.  A network of fast-spiking cells in the neocortex connected by electrical synapses , 1999, Nature.

[47]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[48]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[49]  Y. Kubota,et al.  Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex , 1998, Neuroscience.

[50]  K. Zilles,et al.  Interneurons Immunoreactive for Vasoactive Intestinal Polypeptide (VIP) are Extensively Innervated by Parvalbumin‐Containing Boutons in Rat Primary Somatosensory Cortex , 1997, The European journal of neuroscience.

[51]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[52]  A. Burkhalter,et al.  Three distinct families of GABAergic neurons in rat visual cortex. , 1997, Cerebral cortex.

[53]  P. Somogyi,et al.  Fast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neurone in the cat visual cortex. , 1997, The Journal of physiology.

[54]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[55]  Y. Kubota,et al.  Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. , 1993, Journal of neurophysiology.

[56]  J. DeFelipe,et al.  Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. , 1993, Cerebral cortex.

[57]  A. Larkman Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns , 1991, The Journal of comparative neurology.

[58]  R. Nicoll,et al.  GABA-mediated biphasic inhibitory responses in hippocampus , 1979, Nature.

[59]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.