Quantum symmetries of classical manifolds and their cocycle twists

[1]  S. J. Bhatt,et al.  On a class of smooth Frechet subalgebras of C*-algebras , 2013 .

[2]  Debashish Goswami,et al.  Quantum Isometry Groups of Noncommutative Manifolds Obtained by Deformation Using Dual Unitary 2-Cocycles ? , 2013, 1307.4850.

[3]  S. Neshveyev,et al.  Deformation of C⁎-algebras by cocycles on locally compact quantum groups , 2013, 1301.4897.

[4]  Huichi Huang Faithful compact quantum group actions on connected compact metrizable spaces , 2012, 1202.1175.

[5]  T. Banica,et al.  Quantum isometries and group dual subgroups , 2012, 1201.3392.

[6]  P. Sołtan On actions of compact quantum groups , 2010, 1003.5526.

[7]  Debashish Goswami,et al.  Quantum Isometries and Noncommutative Spheres , 2009, 0905.3814.

[8]  Adam G. Skalski,et al.  Quantum Isometry Groups of 0- Dimensional Manifolds , 2008, 0807.4288.

[9]  Debashish Goswami,et al.  Quantum Group of Orientation preserving Riemannian Isometries , 2008, 0806.3687.

[10]  Jyotishman Bhowmick Quantum isometry group of the n-tori , 2008, 0803.4434.

[11]  Debashish Goswami,et al.  Quantum Isometry Groups: Examples and Computations , 2007, 0707.2648.

[12]  Debashish Goswami Quantum Group of Isometries in Classical and Noncommutative Geometry , 2007, 0704.0041.

[13]  B. Collins,et al.  Quantum permutation groups: a survey , 2006, math/0612724.

[14]  T. Banica,et al.  On the structure of quantum permutation groups , 2004, math/0411576.

[15]  T. Banica Quantum automorphism groups of homogeneous graphs , 2003, math/0311402.

[16]  T. Banica Quantum automorphism groups of small metric spaces , 2003, math/0304025.

[17]  Debashish Goswami TWISTED ENTIRE CYCLIC COHOMOLOGY, J-L-O COCYCLES AND EQUIVARIANT SPECTRAL TRIPLES , 2002, math-ph/0204010.

[18]  A. Connes,et al.  Institute for Mathematical Physics Noncommutative Finite–dimensional Manifolds Spherical Manifolds and Related Examples Noncommutative Finite-dimensional Manifolds I. Spherical Manifolds and Related Examples , 2022 .

[19]  S. Vaes The unitary implementation of a locally compact quantum group action , 2000, math/0005262.

[20]  J. Kustermans,et al.  Locally compact quantum groups in the von Neumann algebraic setting , 2000, math/0005219.

[21]  S. Majid Quantum groups and noncommutative geometry , 2000, hep-th/0006167.

[22]  Julien Bichon,et al.  Quantum automorphism groups of finite graphs , 1999, math/9902029.

[23]  J. Kustermans LOCALLY COMPACT QUANTUM GROUPS IN THE UNIVERSAL SETTING , 1999, math/9902015.

[24]  J. Fröhlich,et al.  Supersymmetric Quantum Theory and Non-Commutative Geometry , 1998, math-ph/9807006.

[25]  Shuzhou Wang,et al.  Quantum Symmetry Groups of Finite Spaces , 1998, math/9807091.

[26]  Ann Maes,et al.  Notes on Compact Quantum Groups , 1998, math/9803122.

[27]  Shuzhou Wang Deformations of compact quantum groups via Rieffel's quantization , 1996 .

[28]  A. V. Daele,et al.  Discrete Quantum Groups , 1996 .

[29]  S. Majid Foundations of Quantum Group Theory , 1995 .

[30]  Simson Wassermann,et al.  K‐THEORY AND C*‐ALGEBRAS: A FRIENDLY APPROACH , 1995 .

[31]  Shuzhou Wang,et al.  Free products of compact quantum groups , 1995 .

[32]  P. Podlés Symmetries of quantum spaces. Subgroups and quotient spaces of quantumSU(2) andSO(3) groups , 1994, hep-th/9402069.

[33]  S. Woronowicz,et al.  Compact matrix pseudogroups , 1987 .

[34]  W. Singhof,et al.  Parallelizability of homogeneous spaces, II , 1982 .

[35]  M. Rieffel,et al.  A BOUNDED OPERATOR APPROACH TO TOMITA-TAKESAKI THEORY , 1977 .

[36]  Debashish Goswami,et al.  Deformation by Dual Unitary Cocycles and Generalized Fixed Point Algebra for Quantum Group Actions , 2015 .

[37]  Alain Connes,et al.  Noncommutative geometry , 1994 .

[38]  Y. Manin Some remarks on Koszul algebras and quantum groups , 1987 .