Quantum symmetries of classical manifolds and their cocycle twists
暂无分享,去创建一个
[1] S. J. Bhatt,et al. On a class of smooth Frechet subalgebras of C*-algebras , 2013 .
[2] Debashish Goswami,et al. Quantum Isometry Groups of Noncommutative Manifolds Obtained by Deformation Using Dual Unitary 2-Cocycles ? , 2013, 1307.4850.
[3] S. Neshveyev,et al. Deformation of C⁎-algebras by cocycles on locally compact quantum groups , 2013, 1301.4897.
[4] Huichi Huang. Faithful compact quantum group actions on connected compact metrizable spaces , 2012, 1202.1175.
[5] T. Banica,et al. Quantum isometries and group dual subgroups , 2012, 1201.3392.
[6] P. Sołtan. On actions of compact quantum groups , 2010, 1003.5526.
[7] Debashish Goswami,et al. Quantum Isometries and Noncommutative Spheres , 2009, 0905.3814.
[8] Adam G. Skalski,et al. Quantum Isometry Groups of 0- Dimensional Manifolds , 2008, 0807.4288.
[9] Debashish Goswami,et al. Quantum Group of Orientation preserving Riemannian Isometries , 2008, 0806.3687.
[10] Jyotishman Bhowmick. Quantum isometry group of the n-tori , 2008, 0803.4434.
[11] Debashish Goswami,et al. Quantum Isometry Groups: Examples and Computations , 2007, 0707.2648.
[12] Debashish Goswami. Quantum Group of Isometries in Classical and Noncommutative Geometry , 2007, 0704.0041.
[13] B. Collins,et al. Quantum permutation groups: a survey , 2006, math/0612724.
[14] T. Banica,et al. On the structure of quantum permutation groups , 2004, math/0411576.
[15] T. Banica. Quantum automorphism groups of homogeneous graphs , 2003, math/0311402.
[16] T. Banica. Quantum automorphism groups of small metric spaces , 2003, math/0304025.
[17] Debashish Goswami. TWISTED ENTIRE CYCLIC COHOMOLOGY, J-L-O COCYCLES AND EQUIVARIANT SPECTRAL TRIPLES , 2002, math-ph/0204010.
[18] A. Connes,et al. Institute for Mathematical Physics Noncommutative Finite–dimensional Manifolds Spherical Manifolds and Related Examples Noncommutative Finite-dimensional Manifolds I. Spherical Manifolds and Related Examples , 2022 .
[19] S. Vaes. The unitary implementation of a locally compact quantum group action , 2000, math/0005262.
[20] J. Kustermans,et al. Locally compact quantum groups in the von Neumann algebraic setting , 2000, math/0005219.
[21] S. Majid. Quantum groups and noncommutative geometry , 2000, hep-th/0006167.
[22] Julien Bichon,et al. Quantum automorphism groups of finite graphs , 1999, math/9902029.
[23] J. Kustermans. LOCALLY COMPACT QUANTUM GROUPS IN THE UNIVERSAL SETTING , 1999, math/9902015.
[24] J. Fröhlich,et al. Supersymmetric Quantum Theory and Non-Commutative Geometry , 1998, math-ph/9807006.
[25] Shuzhou Wang,et al. Quantum Symmetry Groups of Finite Spaces , 1998, math/9807091.
[26] Ann Maes,et al. Notes on Compact Quantum Groups , 1998, math/9803122.
[27] Shuzhou Wang. Deformations of compact quantum groups via Rieffel's quantization , 1996 .
[28] A. V. Daele,et al. Discrete Quantum Groups , 1996 .
[29] S. Majid. Foundations of Quantum Group Theory , 1995 .
[30] Simson Wassermann,et al. K‐THEORY AND C*‐ALGEBRAS: A FRIENDLY APPROACH , 1995 .
[31] Shuzhou Wang,et al. Free products of compact quantum groups , 1995 .
[32] P. Podlés. Symmetries of quantum spaces. Subgroups and quotient spaces of quantumSU(2) andSO(3) groups , 1994, hep-th/9402069.
[33] S. Woronowicz,et al. Compact matrix pseudogroups , 1987 .
[34] W. Singhof,et al. Parallelizability of homogeneous spaces, II , 1982 .
[35] M. Rieffel,et al. A BOUNDED OPERATOR APPROACH TO TOMITA-TAKESAKI THEORY , 1977 .
[36] Debashish Goswami,et al. Deformation by Dual Unitary Cocycles and Generalized Fixed Point Algebra for Quantum Group Actions , 2015 .
[37] Alain Connes,et al. Noncommutative geometry , 1994 .
[38] Y. Manin. Some remarks on Koszul algebras and quantum groups , 1987 .