Model for thermoelastic actuation of an axisymmetric isotropic circular plate via an internal harmonic heat source

Abstract This paper presents a reduced analytical modeling method for the initial optimal design of thermoelastic micromachined actuators. The key aspects of the model are a Green’s function formulation of the axisymmetric heat conduction equation that incorporates an internal heat source and the solution of the thermoelastically forced bending wave equation. Model results of a representative thermoelastic structure include transient temperature and sinusoidal steady state transverse displacement. Comparison with finite element analysis shows excellent agreement with favorable computational costs. Model constraints at low frequencies are identified and discussed. The computational efficiency of the analytical model makes it a more viable modeling method for design optimization.

[1]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1987 .

[2]  Michael Curt Elwenspoek,et al.  Frequency Dependence of Thermal Excitation of Micromechanical Resonators , 1990 .

[3]  Arthur W. Leissa,et al.  Vibration of Plates , 2021, Solid Acoustic Waves and Vibration.

[4]  J. N. Reddy,et al.  Theory and analysis of elastic plates , 1999 .

[5]  C. G. Speziale On the coupled heat equation of linear thermoelasticity , 2001 .

[6]  S. Mir,et al.  A CMOS Compatible Ultrasonic Transducer Fabricated With Deep Reactive Ion Etching , 2006, Journal of Microelectromechanical Systems.

[7]  T. Irie,et al.  Thermally Induced Vibration of Circular Plate , 1978 .

[8]  S. Spearing,et al.  Materials Selection and Design of Microelectrothermal Bimaterial Actuators , 2007, Journal of Microelectromechanical Systems.

[9]  E. Kreyszig,et al.  Advanced Engineering Mathematics. , 1974 .

[10]  M. Madou Fundamentals of microfabrication : the science of miniaturization , 2002 .

[12]  Marc Madou,et al.  Fundamentals of Microfabrication , 2002 .

[13]  Oliver Brand,et al.  Ultrasound barrier microsystem for object detection based on micromachined transducer elements , 1997 .

[14]  H. Baltes,et al.  Mechanical behavior and sound generation efficiency of prestressed, elastically clamped and thermomechanically driven thin film sandwiches , 1999 .

[15]  Jan H. J. Fluitman,et al.  Thermal actuation of clamped silicon microbeans , 1992 .

[16]  S. Campbell The Science and Engineering of Microelectronic Fabrication , 2001 .

[17]  Oliver Brand,et al.  Micromachined Ultrasound-Based Proximity Sensors , 1999 .

[18]  F. W. Kellaway,et al.  Advanced Engineering Mathematics , 1969, The Mathematical Gazette.

[19]  M. Elwenspoek,et al.  Ultrasonic transducer with thermo mechanical excitation and piezoresistive detection , 1996, 1996 International Semiconductor Conference. 19th Edition. CAS'96 Proceedings.

[20]  Jan H. J. Fluitman,et al.  Performance of thermally excited resonators , 1990 .

[21]  Julius S. Bendat,et al.  Wiley Series in Probability and Statistics , 2010 .